Skip to main content
Log in

High Spatial and Temporal Variability of Dry Deposition in a Coastal Region

  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

A real meteorological situation characterized by strong spatial and temporal variability of the meteorological fields in a coastal region of eastern Denmark is examined in view of the transport of a passive tracer and dry deposition. Model simulations using a full mesoscale NWP model (COAMPSTM) at different horizontal resolutions are performed. A realistic simulation showed that the differences in the amount of dry deposited matter can reach one order of magnitude and larger, during the period of one afternoon, depending on the model horizontal resolution. In addition, the results of an idealized experiment with straight coastline indicate that the horizontal model resolution alone is responsible for most of the differences. This study confirms the importance of high spatial and temporal resolution modelling for environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dundas, I., Johannessen, O.M., Berge, G. and Heimdal B.: 1988, Toxic algal bloom in Scandinavian waters, May–June 1988. Oceanography, April issue, 9–14.

  2. MEAD: 2003, Marine Effects of Atmospheric Deposition, EVK3-CT-1999-00014, Final Report to the European Commission. 73 pp.

  3. R. Singles M.A. Sutton K.J. Weston (1998) ArticleTitleA multi-layer model to describe the atmospheric transport and deposition of ammonia in Great Britain Atmos. Environ. 32 393–399 Occurrence Handle10.1016/S1352-2310(97)83467-X

    Article  Google Scholar 

  4. W.A.H. Asman (1998) ArticleTitleFactors influencing local dry deposition of gases with special reference to ammonia Atmos. Environ. 32 415–421 Occurrence Handle10.1016/S1352-2310(97)00166-0

    Article  Google Scholar 

  5. C.B. Hasager J. Carstensen T. Ellermann B.G. Gustafson O. Hertel M. Johnsson S. Markager C. Ambelas Skjøth (2003) ArticleTitleOn extreme atmospheric and marine nitrogen fluxes and chlorophyll-a levels in the Kattegat strait Atmos. Chem. Phys. 3 797–812

    Google Scholar 

  6. K. Schlünzen S. Pahl (1992) ArticleTitleModification of dry deposition in a developing sea-breeze circulation – a numerical case study Atmos. Environ. 26 51–61

    Google Scholar 

  7. M. Žagar G. Svensson M. Tjernström (2003) ArticleTitleMethod for determining the variability of the surface turbulent momentum flux seaward of the coast J. Appl. Met. 42 291–307 Occurrence Handle10.1175/1520-0450(2003)042<0291:AMFDTS>2.0.CO;2

    Article  Google Scholar 

  8. M. Žagar J. Rakovec (1999) ArticleTitleSmall-scale surface wind prediction using dynamic adaptation Tellus 51 489–504 Occurrence Handle10.1034/j.1600-0870.1999.t01-4-00003.x

    Article  Google Scholar 

  9. R.M. Hodur (1997) ArticleTitleThe Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) Mon. Wea. Rev. 125 1414–1430 Occurrence Handle10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2

    Article  Google Scholar 

  10. G. Mellor T. Yamada (1974) ArticleTitleA hierarchy of turbulence closure models for planetary boundary layers J. Atmos. Sci. 31 1791–1806 Occurrence Handle10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2

    Article  Google Scholar 

  11. S.A. Rutledge P.V. Hobbs (1983) ArticleTitleThe mesoscale and microscale structure of organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands J. Atmos. Sci. 40 1185–1206 Occurrence Handle10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2

    Article  Google Scholar 

  12. Kain, J.S. and Fritsch, J.M.: 1993, Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46. Amer. Meteor. Soc., 165–170.

  13. R. Harshvardhan D. Davies Randall T. Corsetti (1987) ArticleTitleA fast radiation parameterization for atmospheric circulation models J. Geophys. Res. 92 1009–1015

    Google Scholar 

  14. H.C. Davies (1976) ArticleTitleA lateral boundary formulation for multi-level prediction models Quart. J. Roy. Meteor. Soc. 102 405–418 Occurrence Handle10.1256/smsqj.43209

    Article  Google Scholar 

  15. A. Bott (1989) ArticleTitleA positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes Mon. Wea. Rev. 117 1006–1015 Occurrence Handle10.1175/1520-0493(1989)117<1006:APDASO>2.0.CO;2

    Article  Google Scholar 

  16. A. Bott (1992) ArticleTitleMonotone flux limitation in the area-preserving flux-form advection algorithm Mon. Wea. Rev. 120 2592–2602 Occurrence Handle10.1175/1520-0493(1992)120<2592:MFLITA>2.0.CO;2

    Article  Google Scholar 

  17. W.A.H. Asman (2001) ArticleTitleModelling the atmospheric transport and deposition of ammonia and ammonium: An overview with special reference to Denmark Atmos. Environ. 35 1969–1983 Occurrence Handle10.1016/S1352-2310(00)00548-3

    Article  Google Scholar 

  18. M. Baer K. Nester (1992) ArticleTitleParametrization of trace gas dry deposition velocities for a regional mesoscale diffusion model Ann. Geophysic. 10 912–923

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Žagar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žagar, M., Svensson, G. & Tjernström, M. High Spatial and Temporal Variability of Dry Deposition in a Coastal Region. Environ Fluid Mech 5, 357–372 (2005). https://doi.org/10.1007/s10652-004-7301-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-004-7301-4

Key words

Navigation