Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching. What makes it special?

*Journal of Teacher Education, 59*(5), 389–407.

CrossRefBingolbali, E., & Monaghan, J. (2008). Concept image revisited.

*Educational Studies in Mathematics, 68*, 19–35.

CrossRefBiza, I., Christou, C., & Zachariades, T. (2008). Student perspectives on the relationship between a curve and its tangent in the transition from Euclidean geometry to analysis.

*Research in Mathematics Education, 10*(1), 53–70.

CrossRefBiza, I., Nardi, E., & Zachariades, T. (2007). Using tasks to explore teacher knowledge in situation-specific contexts.

*Journal of Mathematics Teacher Education, 10*, 301–309.

CrossRefBiza, I., Nardi, E., & Zachariades, T. (2009). Teacher beliefs and the didactic contract on visualisation. *For the Learning of Mathematics, 29*(3), 31–36.

Brousseau, G. (1997). *Theory of didactical situations in mathematics*. Dordrecht: Kluwer.

Castela, C. (1995). Apprendre avec et contre ses connaissances antérieures: Un example concret, celui de la tangente [Learning with and in contradiction to previous knowledge: A concrete example, that of tangent]. *Recherches en Didactiques des mathématiques, 15*(1), 7–47.

Chevallard, Y. (1985). *La transposition didactique [The didactic transposition]*. Grenoble: La Pensée Sauvage Éditions.

Cook, S. D., & Brown, J. S. (1999). Bridging epistemologies: The generative dance between organizational knowledge and organizational knowing.

*Organization Science, 10*(4), 381–400.

CrossRefEvens, H., & Houssart, J. (2004). Categorizing pupils' written answers to a mathematics test question: 'I know but I can't explain'.

*Educational Research, 46*(3), 269–282.

CrossRefFreeman, J. B. (2005a). Systematizing Toulmin’s warrants: An epistemic approach.

*Argumentation, 19*(3), 331–346.

CrossRefFreeman, J. B. (2005b). *Acceptable premises: An epistemic approach to an informal logic problem*. Cambridge, UK: Cambridge University Press.

Giannakoulias, E., Mastoridis, E., Potari, D., & Zachariades, T. (2010). Studying teachers’ mathematical argumentation in the context of refuting students’ invalid claims.

*The Journal of Mathematical Behavior, 29*, 160–168.

CrossRefHarel, G., & Sowder, L. (2007). Towards comprehensive perspectives on the learning and teaching of proof. In F. K. Lester (Ed.), *The second handbook of research on mathematics teaching and learning* (pp. 805–842). USA: NCTM.

Herbst, P., & Chazan, D. (2003). Exploring the practical rationality of mathematics teaching through conversations about videotaped episodes: The case of engaging students in proving. *For the Learning of Mathematics, 23*(1), 2–14.

Hill, H. C., & Ball, D. L. (2004). Learning mathematics for teaching: Results from California's mathematics professional development institutes.

*Journal for Research in Mathematics Education, 35*(5), 330–351.

CrossRefHoyles, C., & Küchemann, D. (2002). Students' understanding of logical implication.

*Educational Studies in Mathematics, 51*, 193–223.

CrossRefInglis, M., & Mejia-Ramos, J. P. (2008). How persuaded are you? A typology of responses.

*Research in Mathematics Education, 10*(2), 119–133.

CrossRefInglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification.

*Educational Studies in Mathematics, 66*, 3–21.

CrossRefJacobs, J. K., & Morita, E. (2002). Japanese and American teachers' evaluations of videotaped mathematics lessons.

*Journal for Research in Mathematics Education, 33*(3), 154–175.

CrossRefKennedy, M. M. (2002). Knowledge and teaching.

*Teachers & Teaching, 8*(3/4), 355–370.

CrossRefKnuth, E. J. (2002). Secondary school mathematics teachers' conceptions of proof.

*Journal for Research in Mathematics Education, 33*(5), 379–405.

CrossRefKrummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), *The emergence of mathematical meaning: Interaction in classroom cultures* (pp. 229–269). Hillsdale, NJ: Lawrence Erlbaum.

Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom: Two episodes and related theoretical abductions.

*The Journal of Mathematical Behavior, 26*(1), 60–82.

CrossRefLampert, M. (1985). How do teachers manage to teach? Perspectives on problems in practice. *Harvard Educational Review, 55*(2), 178–194.

Leatham, K. R. (2006). Viewing mathematics teachers' beliefs as sensible systems.

*Journal of Mathematics Teacher Education, 9*, 91–102.

CrossRefLeder, G., Pehkonen, E., & Törner, G. (Eds.). (2002). *Beliefs: A hidden variable in mathematics education?* Dordrecht: Kluwer.

Miyakawa, T., & Herbst, P. (2007). Geometry teachers' perspectives on convincing and proving when installing a theorem in class. In T. Lamberg & L. R. Wiest (Eds.), *29th Annual Meetings of PME-NA* (pp. 366–373). Lake Tahoe, NV: University of Nevada, Reno.

Pedemonte, B. (2005). Quelques outils pour l’analyse cognitive du rapport entre argumentation et démonstration [Some tools for the cognitive analysis of the relation between argumentation and demonstration]. *Recherches en Didactique des Mathématiques, 25*, 313–348.

Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed?

*Educational Studies in Mathematics, 66*, 23–41.

CrossRefShulman, L. S. (1986). Those who understand: Knowledge growth in teaching. *Educational Researcher, 15*(2), 4–14.

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. *Harvard Educational Review, 57*(1), 1–22.

Stephan, M., & Rasmussen, C. (2002). Classroom mathematical practices in differential equations.

*The Journal of Mathematical Behavior, 21*(4), 459–490.

CrossRefTall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity.

*Educational Studies in Mathematics, 12*, 151–169.

CrossRefThompson, A. (1992). Teachers’ beliefs and conceptions: A synthesis of the research. In D. A. Grouws (Ed.), *Handbook of research on mathematics teaching and learning* (pp. 122–127). New York: Macmillan.

Toulmin, S. (1958). *The uses of argument*. Cambridge, UK: Cambridge University Press.

Weber, K., & Alcock, L. (2005). Using warranted implications to understand and validate proofs. *For the Learning of Mathematics, 25*, 34–38.

Whitenack, J. W., & Knipping, N. (2002). Argumentation, instructional design theory and students' mathematical learning: A case for coordinating interpretive lenses.

*The Journal of Mathematical Behavior, 21*(4), 441–457.

CrossRefYackel, E. (2001). Explanation, justification, and argumentation in A mathematics classroom. In M. v. d. Heuvel-Panhuizen (Ed.), *Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education* (vol. 1, pp. 9–24). Utrecht, The Netherlands.

Yackel, E. (2002). What we can learn from analyzing the teacher's role in collective argumentation.

*The Journal of Mathematical Behavior, 21*(4), 423–440.

CrossRef