Abbott, E. A. (2008). The annotated *Flatland*. *A romance of many dimensions*. With an introduction and notes by Ian Stewart. New York: Basic Books (Original work published 2002).

Artigue, M. (1994). Analysis. In D. Tall (Ed.), *Advanced mathematical thinking* (p. 172). New York: Springer (“The non-standard analysis revival and its weak impact on education”).

Avigad, J., & Reck, E. (2001). *Clarifying the nature of the infinite: The development of metamathematics and proof theory*, 11 Dec 2001. Carnegie Mellon Technical Report CMU-PHIL-120.

Bell, J. L. (2009). *Continuity and infinitesimals*. Stanford Encyclopedia of Philosophy (Revised 20 Jul 2009).

Bishop, E. (1975). The crisis in contemporary mathematics.

*Historia Mathematica, 2*(4), 507–517.

CrossRefBishop, E. (1977). Review: H. Jerome Keisler. Elementary calculus.

*Bulletin of the American Mathematical Society, 83*, 205–208.

CrossRefBishop, E. (1985). Schizophrenia in contemporary mathematics. In M. Rosenblatt (Ed.), *Errett Bishop: Reflections on him and his research (San Diego, Calif., 1983). Contemp. Math., Vol. 39* (p. 1–32). Providence: American Mathematical Society.

Bos, H. J. M. (1974). Differentials, higher-order differentials and the derivative in the Leibnizian calculus.

*Archive for History of Exact Sciences, 14*, 1–90.

CrossRefBoyer, C. (1949). *The concepts of the calculus*. New York: Hafner.

Cornu, B. (1991). Limits. In D. Tall (Ed.), *Advanced mathematical thinking*. Mathematics Education Library, 11 (pp. 153–166). Dordrecht: Kluwer Academic.

Courant, R. (1937). *Differential and integral calculus* (Vol. I). Translated from the German by E. J. McShane. Reprint of the second edition. Wiley Classics Library. A Wiley-Interscience Publication (1988). New York: Wiley.

Dauben, J. (1992). Appendix (1992): Revolutions revisited. In D. Gillies (Ed.), *Revolutions in mathematics* (pp. 72–82 ). New York: Clarendon.

Dauben, J. (1996). Arguments, logic and proof: mathematics, logic and the infinite. History of mathematics and education: Ideas and experiences (Essen, 1992). *Stud. Wiss. Soz. Bildungsgesch. Math., 11*, 113–148 (Vandenhoeck & Ruprecht, Göttingen).

Davis, M. (1977). Review: J. Donald Monk. Mathematical logic.

*Bulletin of the American Mathematical Society, 83*, 1007–1011.

CrossRefEly, R. (2007). *Student obstacles and historical obstacles to foundational concepts of calculus*. Ph.D. thesis, The University of Wisconsin—Madison.

Ely, R. (2010). Nonstandard student conceptions about infinitesimals. *Journal for Research in Mathematics Education, 41*(2), 117–146.

Ehrlich, P. (2006). The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes.

*Arch. Hist. Exact Sci., 60*(1), 1–121.

CrossRefFeferman, S. (2000). *Relationships between constructive, predicative and classical systems of analysis. Proof theory (Roskilde, 1997). Synthese Lib., Vol. 292* (pp. 221–236). Dordrecht: Kluwer Academic.

Goldblatt, R. (1998). *Lectures on the hyperreals. An introduction to nonstandard analysis. Graduate texts in mathematics, 188*. New York: Springer.

Goldwurm, R’. H. (2001). *The Rishonim. Biographical sketches of the prominent early rabbinic sages and leaders from the tenth–fifteenth centuries* (2nd ed.). Artscroll History Series. Brooklyn: Mesorah.

Gray, E., & Tall, D. (1991). Duality, ambiguity and flexibility in successful mathematical thinking. *Proceedings of PME 15, 2*, 72–79 (Assisi).

Halmos, P. (1985). *I want to be a mathematician. An automathography*. New York: Springer

HaYisraeli, Y. (1310). *Yesod Olam*. In *Poel hashem*. Bnei Braq.

Heijting, A. (1973). Address to professor A. Robinson. At the occasion of the Brouwer memorial lecture given by Prof. A. Robinson on the 26th April 1973. *Nieuw Archief Voor Wiskunde (3), 21*, 134—137.

Hodgson, B. R. (1994). Le calcul infinitésimal. In D. F. Robitaille, D. H. Wheeler, & C. Kieran (Eds.), *Choix de conférence du 7e Congrès international sur l’enseignement des mathématiques (ICME-7)* (pp. 157–170). Sainte-Foy: Presses de l’Université Laval.

Jesseph, D. (1998). Leibniz on the foundations of the calculus: The question of the reality of infinitesimal magnitudes. Leibniz and the sciences. *Perspect. Sci., 6*(1-2), 6–40.

Katz, K., & Katz, M. (2010). When is .999... less than 1? *The Montana Mathematics Enthusiast, 7*(1), 3–30.

Keisler, H. J. (1986). *Elementary Calculus: An Infinitesimal Approach* (2nd ed.). Boston: Prindle, Weber & Schimidt.

Lakoff, G., & Núñez, R. (2000). *Where mathematics comes from. How the embodied mind brings mathematics into being*. New York: Basic Books.

Lakatos, I. (1978). Cauchy and the continuum: The significance of nonstandard analysis for the history and philosophy of mathematics.

*Mathematical Intelligencer 1*(3), 151–161 (originally published in 1966).

CrossRefLightstone, A. H. (1972). Infinitesimals.

*American Mathematical Monthly, 79*, 242–251.

CrossRefLuxemburg, W. (1964). *Nonstandard analysis. Lectures on A. Robinson’s Theory of infinitesimals and infinitely large numbers* (2nd ed.). Pasadena: Mathematics Department, California Institute of Technology.

Luzin, N. N. (1931). Two letters by N. N. Luzin to M. Ya. Vygodskiĭ. With an introduction by S. S. Demidov. Translated from the 1997 Russian original by A. Shenitzer. *American Mathematical Monthly, 107*(1), 64–82, (2000).

Medvedev, F. A. (1998). Nonstandard analysis and the history of classical analysis. Translated by Abe Shenitzer.

*American Mathematical Monthly, 105*(7), 659–664.

CrossRefMonaghan, J. (2001). Young peoples’ ideas of infinity.

*Educational Studies in Mathematics*
**48**(2–3), 239–257.

CrossRefRobinson, A. (1975). *Concerning progress in the philosophy of mathematics. Logic Colloquium ’73 (Bristol, 1975). Studies in Logic and the Foundations of Mathematics, Vol. 80* (pp. 41–52). Amsterdam: North-Holland.

Robinson, A. (1979). Selected papers of Abraham Robinson. In W. A. J. Luxemburg & S. Krner (Eds.), *Nonstandard analysis and philosophy, Vol. II*. New Haven: Yale University Press.

Roh, K. H. (2008). Students’ images and their understanding of definitions of the limit of a sequence.

*Educational Studies in Mathematics, 69*, 217–233.

CrossRefRoquette, P. (2008). *Numbers and Models, standard and nonstandard*. Algebra days, May 2008, Antalya.

Sad, L. A., Teixeira, M. V., & Baldino, R. B. (2001). Cauchy and the problem of point-wise convergence. *Archives Internationales d’histoire des Sciences, 51*(147), 277–308.

Schubring, G. (2005). *Conflicts between generalization, rigor, and intuition. Number concepts underlying the development of analysis in 17–19th Century France and Germany*. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer.

Stewart, I. (2009). *Professor Stewart’s hoard of mathematical treasures*. London: Profile Books.

Sullivan, K. (1976). The teaching of elementary calculus using the nonstandard analysis approach.

*American Mathematical Monthly, 83*, 370–375.

CrossRefTall, D. (1980). Looking at graphs through infinitesimal microscopes, windows and telescopes,

*Mathematical Gazette, 64*, 22–49.

CrossRefTall, D. (1991). The psychology of advanced mathematical thinking. In David Tall (Ed.), *Advanced mathematical thinking. Mathematics Education Library, 11*. Dordrecht: Kluwer Academic.

Tall, D. (2009). Dynamic mathematics and the blending of knowledge structures in the calculus. In *Transforming mathematics education through the use of dynamic mathematics* (pp. 1–11). ZDM

Tall, D. (2010). *How humans learn to think mathematically*. Princeton: Princeton University Press.