Skip to main content
Log in

A meta-analysis comparing the sensitivity of bees to pesticides

Ecotoxicology Aims and scope Submit manuscript

Abstract

The honey bee Apis mellifera, the test species used in the current environmental risk assessment procedure, is generally considered as extremely sensitive to pesticides when compared to other bee species, although a quantitative approach for comparing the difference in sensitivity among bees has not yet been reported. A systematic review of the relevant literature on the topic followed by a meta-analysis has been performed. Both the contact and oral acute LD50 and the chronic LC50 reported in laboratory studies for as many substances as possible have been extracted from the papers in order to compare the sensitivity to pesticides of honey bees and other bee species (Apiformes). The sensitivity ratio R between the endpoint for the species a (A. mellifera) and the species s (bees other than A. mellifera) was calculated for a total of 150 case studies including 19 bee species. A ratio higher than 1 indicated that the species s was more sensitive to pesticides than honey bees. The meta-analysis showed a high variability of sensitivity among bee species (R from 0.001 to 2085.7), however, in approximately 95 % of the cases the sensitivity ratio was below 10. The effect of pesticides in domestic and wild bees is dependent on the intrinsic sensitivity of single bee species as well as their specific life cycle, nesting activity and foraging behaviour. Current data indicates a need for more comparative information between honey bees and non-Apis bees as well as separate pesticide risk assessment procedures for non-Apis bees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. In 2011, EFSA received a mandate by the EU Commission to develop a Guidance Document on the risk assessment of plant protection products on bees, including honey bees, bumblebees and solitary bees. The EFSA proposal was published in July 2013 (http://www.efsa.europa.eu/it/efsajournal/pub/3295.htm) but to be adopted and implemented, the new Guidance Document have to be approved by the EU Member States and the EU Commission. At the time of the publication of this paper the process was on going.

References

  • Ahmad Z, Johansen C (1973) Selective toxicity of carbophenothion and trichlorfon to the honey bee and the alfalfa leafcutting bee. Environ Entomol 2(1):27–30

    CAS  Google Scholar 

  • Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85(9):2408–2421

    Article  Google Scholar 

  • Bailey J, Scott-Dupree C, Harris R, Tolman J, Harris B (2005) Contact and oral toxicity to honey bees (Apis mellifera) of agents registered for use for sweet corn insect control in Ontario, Canada. Apidologie 36(4):623–633

    Article  CAS  Google Scholar 

  • Biesmeijer JC, Roberts SP, Reemer M, Ohlemuller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313(5785):351–354

    Article  CAS  Google Scholar 

  • Blacquiere T, Smagghe G, van Gestel CAM, Mommaerts V (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21(4):973–992

    Article  CAS  Google Scholar 

  • Bosch J, Sgolastra F, Kemp WP (2008) Life cycle ecophysiology of Osmia mason bees used as crop pollinators. In: James RR, Pitts-Singer TL (eds) Bee pollination in agricultural ecosystems. Oxford University Press, Oxford

    Google Scholar 

  • Brittain C, Potts SG (2011) The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination. Basic Appl Ecol 12(4):321–331

    Article  Google Scholar 

  • Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339(6127):1611–1615

    Article  CAS  Google Scholar 

  • Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol 15(5):615–636

    Article  CAS  Google Scholar 

  • Committee on the Status of Pollinators in North America NRC, (2007) Status of Pollinators in North America. National Academies Press, Washington, DC

    Google Scholar 

  • Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social immunity. Curr Biol 17:693–702

    Article  Google Scholar 

  • Cresswell JE (2011) A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology 20(1):149–157

    Article  CAS  Google Scholar 

  • Cresswell JE, Laycock I (2011) Towards the comparative ecotoxicology of bees: the response–response relationship. In: 11th International symposium of the ICP-BR Bee Protection Group, Wageningen, 2–4 November 2011

  • Cresswell JE, Page CJ, Uygun MB, Holmbergh M, Li YR, Wheeler JG, Laycock I, Pook CJ, de Ibarra NH, Smirnoff N, Tyler CR (2012) Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). Zoology 115(6):365–371

    Article  Google Scholar 

  • Decourtye A, Devillers J, Genecque E, Le Menach K, Budzinski H, Cluzeau S, Pham-Delegue MH (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch Environ Contam Toxicol 48(2):242–250

    Article  CAS  Google Scholar 

  • Devillers J, Decourtye A, Budzinski H, Pham-Delegue MH, Cluzeau S, Maurin G (2003) Comparative toxicity and hazards of pesticides to APIS and non-APIS bees. A chemometrical study. SAR QSAR Environ Res 14(5–6):389–403

    Article  CAS  Google Scholar 

  • EFSA (2010) Application of systematic review methodology to food and feed safety assessments to support decision making. EFSA J 8(6):1637

    Google Scholar 

  • EFSA (2012) Scientific opinion on the science behind the development of a risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J 10(5):2668

    Google Scholar 

  • EPPO/OEPP (2010) PP 3/10 (3): chapter 10: honeybees. EPPO Bull 40(3):323–331

    Google Scholar 

  • European Commission (2002) SANCO/10329/2002 Rev 2 guidance document on terrestrial ecotoxicology under Council Directive 91/414/EEC

  • Gallai N, Salles JM, Settele J, Vaissiere BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68(3):810–821

    Article  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, Bartomeus I, Benjamin F, Boreux V, Cariveau D, Chacoff NP, Dudenhoffer JH, Freitas BM, Ghazoul J, Greenleaf S, Hipolito J, Holzschuh A, Howlett B, Isaacs R, Javorek SK, Kennedy CM, Krewenka KM, Krishnan S, Mandelik Y, Mayfield MM, Motzke I, Munyuli T, Nault BA, Otieno M, Petersen J, Pisanty G, Potts SG, Rader R, Ricketts TH, Rundlof M, Seymour CL, Schuepp C, Szentgyorgyi H, Taki H, Tscharntke T, Vergara CH, Viana BF, Wanger TC, Westphal C, Williams N, Klein AM (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339(6127):1608–1611

    Article  CAS  Google Scholar 

  • Hardstone MC, Scott JG (2010) Is Apis mellifera more sensitive to insecticides than other insects? Pest Manag Sci 66(11):1171–1180

    Article  CAS  Google Scholar 

  • Helson BV, Barber KN, Kingsbury PD (1994) Laboratory toxicology of 6 forestry insecticides to 4 species of bee (Hymenoptera, Apoidea). Arch Environ Contam Toxicol 27(1):107–114

    Article  CAS  Google Scholar 

  • Henry M, Beguin M, Requier F, Rollin O, Odoux JF, Aupinel P, Aptel J, Tchamitchian S, Decourtye A (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336(6079):348–350

    Article  CAS  Google Scholar 

  • Johansen CA (1972) Toxicity of field-weathered insecticide residues to four kinds of bees. Environ Entomol 1(3):393–394

    CAS  Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc Biol Sci 274(1608):303–313

    Article  Google Scholar 

  • Kwak MM, Velterop O, van Andel J (1998) Pollen and gene flow in fragmented habitats. Appl Veg Sci 1(1):37–54

    Article  Google Scholar 

  • Ladurner E, Bosch J, Maini S, Kemp WP (2003) A method to feed individual bees (Hymenoptera: Apiformes) known amount of pesticides. Apidologie 34:594–602

    Article  Google Scholar 

  • Laycock I, Lenthall KM, Barratt AT, Cresswell JE (2012) Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker Bumble bees (Bombus terrestris). Ecotoxicology 21(7):1937–1945

    Article  CAS  Google Scholar 

  • Maini S, Medrzycki P, Porrini C (2010) The puzzle of honey bee losses: a brief review. Bull Insectology 63(1):153–160

    Google Scholar 

  • Matsumoto T (2013) Reduction in homing flights in the honey bee Apis mellifera after a sublethal dose of neonicotinoid insecticides. Bull Insectology 66(1):1–9

    Google Scholar 

  • Michener CD (2007) The bees of the world, 2nd edn. The John Hopkins University Press, Baltimore

    Google Scholar 

  • Mommaerts V, Reynders S, Boulet J, Besard L, Sterk G, Smagghe G (2010) Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 19(1):207–215

    Article  CAS  Google Scholar 

  • Neumann P, Carreck NL (2010) Honey bee colony losses. J Apic Res 49(1):1–6

    Article  Google Scholar 

  • Porrini C, Sabatini AG, Girotti S, Fini F, Monaco L, Celli G, Bortolotti L, Ghini S (2003) The death of honey bees and environmental pollution by pesticides: the honey bees as biological indicators. Bull Insectology 56(1):147–152

    Google Scholar 

  • Potts SG, Roberts SPM, Dean R, Marris G, Brown MA, Jones R, Neumann P, Settele J (2010) Declines of managed honey bees and beekeepers in Europe. J Apic Res 49(1):15–22

    Article  Google Scholar 

  • Regulation (EC) 544/2011. Commission Regulation (EU) No 544/2011 of June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards to the data requirements for active substances

  • Schneider CW, Tautz J, Grünewald B, Fuchs S (2012) RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One 7(1):e30023

    Article  CAS  Google Scholar 

  • Scott-Dupree CD, Conroy L, Harris CR (2009) Impact of currently used or potentially useful insecticides for canola agroecosystems on Bombus impatiens (Hymenoptera: Apidae), Megachile rotundata (Hymentoptera: Megachilidae), and Osmia lignaria (Hymenoptera: Megachilidae). J Econ Entomol 102(1):177–182

    Article  CAS  Google Scholar 

  • Tasei JN (2002) Impact of agrochemicals on non-Apis bees. Honey bees: estimating the environmental impact of chemicals. Taylor & Francis, London

    Google Scholar 

  • Thompson HM (2001) Assessing the exposure and toxicity of pesticides to bumblebees (Bombus sp.). Apidologie 32(4):305–321

    Article  CAS  Google Scholar 

  • Thompson HM, Hunt LV (1999) Extrapolating from honeybees to bumblebees in pesticide risk assessment. Ecotoxicology 8(3):147–166

    Article  Google Scholar 

  • van der Steen JJM (1994) Method development for the determination of the contact LD 50 of pesticides for bumble bees (Bombus terrestris L.). Apidologie 25(5):463–465

    Google Scholar 

  • Whitehorn PR, O’Connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336(6079):351–352

    Article  CAS  Google Scholar 

  • Williams IH (1994) The dependence of crop production within the European Union on pollination by honey bees. Agric Sci Rev 6:229–257

    Google Scholar 

  • Winfree R, Williams NM, Dushoff J, Kremen C (2007) Native bees provide insurance against ongoing honey bee losses. Ecol Lett 10(11):1105–1113

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to the EFSA Bee Working group (Robert Luttik, Franz Streissl, Csaba Szentes, Agnes Rortais, Gèrard Arnold, Jos Boesten, Mark Clook, Jacoba Wassenberg) for their comments and suggestions and to Stephanie Bopp and Sotirios Vasileiadis for reviewing part of the manuscript. We very much appreciate the constructive and helpful comments of Rachel Sharp (EFSA) and the three anonymous reviewers.

Disclaimer

The publication was drafted under the sole responsibility of the authors and is not considered as an EFSA output. The positions and opinions presented are those of the authors alone and are not intended to represent the views of EFSA.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Sgolastra.

Additional information

The author Maria Arena is a Seconded National Expert in EFSA from the Institute of agricultural and environmental chemistry, Università Cattolica del Sacro Cuore, Piacenza Italy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 626 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arena, M., Sgolastra, F. A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 23, 324–334 (2014). https://doi.org/10.1007/s10646-014-1190-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1190-1

Keywords

Navigation