Skip to main content
Log in

Effects of a bioassay-derived ivermectin lowest observed effect concentration on life-cycle traits of the nematode Caenorhabditis elegans

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The pharmaceutical ivermectin is used to treat parasitic infections, such as those caused by nematodes. While several studies have demonstrated the severe effects of ivermectin on non-target organisms, little is known about the drug’s impact on free-living nematodes. In the present work, a full life-cycle experiment was conducted to estimate how an ivermectin lowest observed effect concentration derived from a Caenorhabditis elegans bioassay (endpoint reproduction) might translate into effects at the population level of this free-living nematode. The results showed that fecundity decreased to levels similar to those determined in the bioassay after a time of corresponding duration (18.6 % inhibition compared to the control), but the impact then rather weakened until the end of the experiment, at which point the net reproductive rate (R0) was still, but not significantly, reduced by 12.4 %. Moreover, the average lifespan, length of the reproductive period, maximum daily reproduction rate, and intrinsic rate of increase (rm) were significantly reduced by 30.0, 25.9, 11.2, and 3.5 %, respectively. The experiment revealed that a 4-day bioassay is protective enough for C. elegans with respect to ivermectin’s effects on fecundity. However, the pronounced effects of a low drug concentration on survival, a highly elastic trait, may better account for the observed population-level response, i.e., a decrease of rm, than the effects on fecundity. These results emphasize that full life-cycle experiments are valuable for assessment of pollutants, because the effects on several life-cycle traits can be simultaneously measured and integrated into an ecologically relevant parameter, the population growth rate, that reflects a population’s response to a specific pollutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez OA, Jager T, Kooijman SALM, Kammenga JE (2005) Responses to stress of Caenorhabditis elegans populations with different reproductive strategies. Funct Ecol 19:656–664

    Article  Google Scholar 

  • Alvarez OA, Jager T, Redondo EM, Kammenga JE (2006) Physiological modes of action of toxic chemicals in the nematode Acrobeloides nanus. Environ Toxicol Chem 25:3230–3237

    Article  CAS  Google Scholar 

  • Ardelli BF, Stitt LE, Tompkins JB, Prichard RK (2009) A comparison of the effects of ivermectin and moxidectin on the nematode Caenorhabditis elegans. Vet Parasitol 165:96–108

    Article  CAS  Google Scholar 

  • Arena JP, Liu KK, Paress PS, Frazier EG, Cully DF, Mrozik H, Schaeffer JM (1995) The mechanism of action of avermectins in Caenorhabditis elegans: correlation between activation of glutamate-sensitive chloride current, membrane binding, and biological activity. J Parasitol 81:286–294

    Article  CAS  Google Scholar 

  • Bernt U, Junkersdorf B, Londershausen M, Harder A, Schierenberg E (1998) Effects of anthelminthics with different modes of action on the behavior and development of Caenorhabditis elegans. Fundam Appl Nematol 21:251–263

    CAS  Google Scholar 

  • Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14:224–228

    Article  Google Scholar 

  • Brenner S (1974) Genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  Google Scholar 

  • Brinke M, Höss S, Fink G, Ternes TA, Heininger P, Traunspurger W (2010) Assessing effects of the pharmaceutical ivermectin on meiobenthic communities using freshwater microcosms. Aquat Toxicol 99:126–137

    Article  CAS  Google Scholar 

  • Brinke M, Heininger P, Traunspurger W (2011) A semi-fluid gellan gum medium improves nematode toxicity testing. Ecotoxicol Environ Saf 74:1824–1831

    Article  CAS  Google Scholar 

  • Calow P, Sibly RM, Forbes V (1997) Risk assessment on the basis of simplified life-history scenarios. Environ Toxicol Chem 16:1983–1989

    Article  CAS  Google Scholar 

  • Campbell WC, Fisher MH, Stapley EO, Albers-Schönberg G, Jacob TA (1983) Ivermectin: a potent new antiparasitic agent. Science 221:823–828

    Article  CAS  Google Scholar 

  • Charlesworth B (1994) Evolution in age-structured populations, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Derycke S, Hendrickx F, Backeljau T, D’Hondt S, Camphijn L, Vincx M, Moens T (2007) Effects of sublethal abiotic stressors on population growth and genetic diversity of Pellioditis marina (Nematoda) from the Westerschelde estuary. Aquat Toxicol 82:110–119

    Article  CAS  Google Scholar 

  • Duce IR, Scott RH (1985) Actions of dihydroavermectin B1a on insect muscle. Br J Pharmacol 85:395–401

    Article  CAS  Google Scholar 

  • Edwards CA, Atiyeh RM, Römbke J (2001) Environmental impact of avermectins. Rev Environ Contam Toxicol 171:111–137

    CAS  Google Scholar 

  • Ferson S, Ginzburg LR, Goldstein RA (1996) Inferring ecological risk from toxicity bioassays. Water Air Soil Pollut 90:71–82

    Article  CAS  Google Scholar 

  • Forbes VE, Calow P (1999) Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ Toxicol Chem 18:1544–1556

    Article  CAS  Google Scholar 

  • Forbes VE, Calow P, Sibly RM (2001) Are current species extrapolation models a good basis for ecological risk assessment? Environ Toxicol Chem 20:442–447

    Article  CAS  Google Scholar 

  • Forbes VE, Calow P, Sibly RM (2008) The extrapolation problem and how population modeling can help. Environ Toxicol Chem 27:1987–1994

    Article  CAS  Google Scholar 

  • Forbes VE, Olsen M, Palmqvist A, Calow P (2010) Environmentally sensitive life-cycle traits have low elasticity: implications for theory and practice. Ecol Appl 20:1449–1455

    Article  Google Scholar 

  • Geary TG, Sims SM, Thomas EM, Vanover L, Davis JP, Winterrowd CA, Klein RD, Ho NFH, Thompson DP (1993) Haemonchus contortus: ivermectin-induced paralysis of the pharynx. Exp Parasitol 77:88–96

    Article  CAS  Google Scholar 

  • ISO (2010) Water quality—Determination of the toxic effect of sediment and soil samples on growth, fertility and reproduction of Caenorhabditis elegans (Nematoda). International Organization for Standardization 10872. Geneva, Switzerland

  • Jager T, Klok C (2010) Extrapolating toxic effects on individuals to the population level: the role of dynamic energy budgets. Philos Trans R Soc Lond B Biol Sci 365:3531–3540

    Article  Google Scholar 

  • Kammenga JE, Riksen JAG (1996) Comparing differences in species sensitivity to toxicants: phenotypic plasticity versus concentration-response relationships. Environ Toxicol Chem 15:1649–1653

    CAS  Google Scholar 

  • Kammenga JE, Busschers M, Van Straalen NM, Jepson PC, Bakker J (1996) Stress induced fitness reduction is not determined by the most sensitive life-cycle trait. Funct Ecol 10:106–111

    Article  Google Scholar 

  • Kammenga JE, van Koert PHG, Koeman JH, Bakker J (1997) Fitness consequences of toxic stress evaluated within the context of phenotypic plasticity. Ecol Appl 7:726–734

    Article  Google Scholar 

  • Krogh KA, Björklund E, Löffler D, Fink G, Halling-Sørensen B, Ternes TA (2008) Development of an analytical method to determine avermectins in water, sediments and soils using liquid chromatography-tandem mass spectrometry. J Chromatogr A 1211:60–69

    Article  CAS  Google Scholar 

  • Liebig M, Alonso Fernandez A, Blübaum-Gronau E, Boxall A, Brinke M, Carbonell G, Egeler P, Fenner K, Fernandez C, Fink G, Garric J, Halling-Sørensen B, Knacker T, Krogh KA, Küster A, Löffler D, Porcel Cots MA, Pope L, Prasse C, Römbke J, Rönnefahrt I, Schneider MK, Schweitzer N, Tarazona JV, Ternes TA, Traunspurger W, Wehrhan A, Duis K (2010) Environmental risk assessment of ivermectin: a case study. Integr Environ Assess Manage 6:567–587

    Article  CAS  Google Scholar 

  • Lira VF, Santos GAP, Derycke S, Larrazabal MEL, Fonsêca-Genevois VG, Moens T (2011) Effects of barium and cadmium on the population development of the marine nematode Rhabditis (Pellioditis) marina. Mar Environ Res 72:151–159

    Article  CAS  Google Scholar 

  • Meyer JS, Ingersoll CG, McDonald LL, Boyce MS (1986) Estimating uncertainty in population growth rates: jackknife vs. bootstrap techniques. Ecology 67:1156–1166

    Article  Google Scholar 

  • Muschiol D, Schroeder S, Traunspurger W (2009) Life cycle and population growth rate of Caenorhabditis elegans studied by a new method. BMC Ecol 9:14

    Article  Google Scholar 

  • Nørhave NJ, Spurgeon D, Svendsen C, Cedergreen N (2012) How does growth temperature affect cadmium toxicity measured on different life history traits in the soil nematode Caenorhabditis elegans? Environ Toxicol Chem 31:787–793

    Article  Google Scholar 

  • Omura S (2008) Ivermectin: 25 years and still going strong. Int J Antimicrob Agents 31:91–98

    Article  CAS  Google Scholar 

  • Prasse C, Löffler D, Ternes TA (2009) Environmental fate of the anthelmintic ivermectin in an aerobic sediment/water system. Chemosphere 77:1321–1325

    Article  CAS  Google Scholar 

  • Sibly RM (1996) Effects of pollutants on individual life histories and population growth rates. In: Newman MC, Jagoe CH (eds) Ecotoxicology: a hierarchical treatment. CRC/Lewis Publishers, Boca Raton, pp 197–223

    Google Scholar 

  • Traunspurger W, Michiels IC, Abebe E (2006) Composition and distribution of free-living freshwater nematodes: global and local perspectives. In: Abebe E, Andrassy I, Traunspurger W (eds) Freshwater nematodes: ecology and taxonomy. CABI Publishing, Wallingford, pp 46–76

    Chapter  Google Scholar 

  • Van Leeuwen CJ, Luttmer WJ, Griffioen PS (1985) The use of cohorts and populations in chronic toxicity studies with Daphnia magna: a cadmium example. Ecotoxicol Environ Saf 9:26–39

    Article  Google Scholar 

  • Vranken G, Heip C (1983) Calculation of the intrinsic rate of natural increase, rm, with Rhabditis marina Bastian 1865 (Nematoda). Nematologica 29:468–477

    Article  Google Scholar 

  • Vranken G, Heip C (1986) Toxicity of copper, mercury and lead to a marine nematode. Mar Pollut Bull 17:453–457

    Article  CAS  Google Scholar 

  • Walthall WK, Stark JD (1997) Comparison of two population-level ecotoxicological endpoints: the intrinsic (rm) and instantaneous (ri) rates of increase. Environ Toxicol Chem 16:1068–1073

    CAS  Google Scholar 

  • Wren JF, Kille P, Spurgeon DJ, Swain S, Sturzenbaum SR, Jager T (2011) Application of physiologically based modelling and transcriptomics to probe the systems toxicology of aldicarb for Caenorhabditis elegans (Maupas 1900). Ecotoxicology 20:397–408

    Article  CAS  Google Scholar 

  • Yeates GW, Bongers T, de Goede RGM, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25:315–331

    CAS  Google Scholar 

  • Yeates GW, Dimander SO, Waller P, Hoglund J (2003) Soil nematode populations beneath faecal pats from grazing cattle treated with the ivermectin sustained-release bolus or fed the nematophagous fungus Duddingtonia flagrans to control nematode parasites. Acta Agric Scand A: Anim Sci 53:197–206

    Google Scholar 

  • Yeates GW, Hrabok JT, Oksanen A, Nieminen M, Waller PJ (2007a) Soil nematode populations beneath faeces from reindeer treated with ivermectin. Acta Agric Scand B: Soil Plant 57:126–133

    CAS  Google Scholar 

  • Yeates GW, Skipp RA, Gray RAJ, Chen LY, Waghorn TS (2007b) Impact on soil fauna of sheep faeces containing a range of parasite control agents. Appl Soil Ecol 35:380–389

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Federal Ministry of Transport, Building and Urban Development, Berlin and Bonn, Germany. We thank Guido Fink (Federal Institute of Hydrology, Koblenz, Germany) for analyzing the ivermectin stock solution. The C. elegans strain (N2) was provided by the Caenorhabditis Genetics Center (Minneapolis, MN, USA), which is funded by the National Institutes of Health—National Center for Research Resources (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Traunspurger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinke, M., Heininger, P. & Traunspurger, W. Effects of a bioassay-derived ivermectin lowest observed effect concentration on life-cycle traits of the nematode Caenorhabditis elegans . Ecotoxicology 22, 148–155 (2013). https://doi.org/10.1007/s10646-012-1011-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-012-1011-3

Keywords

Navigation