, Volume 18, Issue 5, pp 488-498
Date: 10 Mar 2009

Changes in mercury bioaccumulation in an apex predator in response to removal of an introduced competitor

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We evaluated methylmercury (MeHg) concentrations in native apex predators, lake trout Salvelinus namaycush before and after the large-scale removal of introduced predators, smallmouth bass Micropterus dolomieu in a 270 ha Adirondack lake. Previous studies show that removing competitors can result in increased growth and decreased mercury concentrations in remaining fish. Instead, we observed a significant increase in lake trout MeHg concentrations despite observed increases in lake trout growth. Bioenergetics simulations predicted similar increases in lake trout MeHg concentrations. Higher MeHg in prey fish (post-removal diet) relative to invertebrates (pre-removal diet) was the most important factor increasing lake trout MeHg concentrations. However, this effect was counteracted by increased lake trout growth (i.e., growth dilution) likely due to a combination of decreased foraging costs and an increase in prey energy density. These data provide evidence for a mechanism (diet shift due to reduced competition) by which changes in food web structure can influence MeHg concentrations in top predators.