Skip to main content

Advertisement

Log in

Unilateral Climate Policy: Harmful or Even Disastrous?

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

This paper deals with possible foreign reactions to unilateral carbon demand reducing policies. It differentiates between demand side and supply side reactions as well as between intra- and inter-temporal shifts in greenhouse gas emissions. In our model, we integrate a stock-dependent marginal physical cost of extracting fossil fuels into Eichner and Pethig’s (Int Econ Rev 52(3):767–805, 2011) general equilibrium carbon leakage model. The results are as follows: Under similar but somewhat tighter conditions than those derived by Eichner and Pethig (Int Econ Rev 52(3):767–805, 2011), a weak green paradox arises. Furthermore, a strong green paradox can arise in our model under supplementary constraints. That means a “green” policy measure might not only lead to a harmful acceleration of fossil fuel extraction but to an increase in the cumulative climate damages at the same time. In some of these cases there is even a cumulative extraction expansion, which we consider disastrous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See (Gerlagh (2011), 82).

  2. These are among others Fischer and Salant (2012), Fischer and Salant (2013), Harstad (2012), Hoel (2011), Hoel (2012), Hoel (2013), and Hoel and Jensen (2012).

  3. This is particularly the case for Eichner and Pethig (2011), Eichner and Pethig (2012), and van der Ploeg and Withagen (2012).

  4. Intratemporal or spatial leakage is discussed e.g. in Eichner and Pethig (2011), Eichner and Pethig (2012), Fischer and Salant (2013), Grafton et al. (2012), and Hoel (2011).

  5. Discrete or continuous, finite or infinite models.

  6. Where these groups are of course not exclusive, depending on its properties each model fits one or more of them.

  7. See (Sinn (2008), 374).

  8. See (Sinn (2008), 390).

  9. See (Sinn (2008), 375f.).

  10. See (Gerlagh (2011), 82).

  11. See (van der Ploeg and Withagen (2012), 343).

  12. See (van der Ploeg and Withagen (2012), 345).

  13. See (van der Ploeg and Withagen (2012), 348).

  14. See (van der Ploeg and Withagen (2012), 353).

  15. See (Grafton et al. (2012), 338).

  16. See (Grafton et al. (2012), 338).

  17. See (Grafton et al. (2012), 338).

  18. See e.g. Hoel and Jensen (2012).

  19. This case assumes, at least implicitly, that fossil fuel is not essential in producing consumption commodities. See e.g. Hoel (2012).

  20. This strategy is analyzed by Harstad (2012) and Hoel (2013).

  21. Fossil fuel supply side (\(i=F\)), abating fossil fuel demand side (\(i=A\)), non-abating fossil fuel demand side (\(i=N\)), time up to the medium term (\(t=1\)), and time up to the very long term (\(t=2\)).

  22. To assure traceability, we try to follow Eichner and Pethig’s (2011) nomenclature wherever this is appropriate. This includes terming the only available policy, namely tightening an emissions cap, as “abatement”, although there is no actual abatement technology or the like in the model.

  23. These “material cost” functions can also be interpreted as “inverse production” or rather “extraction” functions. In each period, their outputs were then actual extraction quantity while their inputs were “material good” (the unique commodity of the world economy) and “current resource stock” (better tapping possibilities).

  24. \(X^{E2}(e_{F1},e_{F2})\) being strictly convex is a sufficient condition for this to hold.

  25. Since we only consider interior solutions in which the resource stock is not fully depleted, this intertemporal cross effect is the key dynamic of the model.

  26. Where the initial equilibrium on the fossil fuel market is characterized by a determination of the intertemporal fossil fuel price by the demand side’s optimality conditions and an extraction of all fossil fuel resources.

  27. “Reserves are those quantities of hydrocarbons which are anticipated to be commercially recovered from known accumulations from a given date forward” (Society of Petroleum Engineers (2005), 11).

  28. This method is also adopted from Eichner and Pethig (2011).

  29. See Appendix Eq. (57). Throughout the rest of the article the commodity in period one is chosen as numeraire.

  30. See Appendix Eq. (59).

  31. These terms are semi-elasticities in the following sense: They measure absolute changes in quantities in relation to relative changes in prices.

  32. See Appendix  Eq. (65).

  33. See Appendix Eqs. (66), (67), (68), and (69).

  34. See Eq. (33) and Appendix Eq. (68).

  35. See Appendix  Eq. (57).

  36. See Appendix  Eq. (59).

  37. See Appendix Eqs. (70), (71), (72), and (73).

  38. This is never fulfilled if \(\Gamma ^D_1\ge 0\).

  39. Where \(\widetilde{\sigma }_{\varSigma }\!=\!\frac{p_{x2}X^{E2}_{e_{F1}}}{p_{e1}} \!\!\cdot \!\!\frac{\pi _2e_{N2}\left| \eta _{N2}\right| }{p_{x2}(x^s_{A2}\!+\!x^s_{N2} -x_{E2})}\!\cdot \!\left[ \left( \frac{\Gamma _1}{p_{e2}e_{N2} \left| \eta _{N2}\right| }\!+\!\frac{\Theta }{\frac{\pi _2e_{N2}\left| \eta _{N2}\right| }{p_{x2}(x^s_{A2}\!+\!x^s_{N2}\!-\!x_{E2})}}\right) \!\cdot \!\left( \!-\!\frac{\Gamma _2}{p_{e1}e_{N1}\left| \eta _{N1}\right| }\right) ^{-1}\right] \). See Appendix  Eq. (72). \(\widetilde{\sigma }_{1}<\widetilde{\sigma }_{\varSigma }\) if and only if \(\Gamma _2<0\) whereby the proof is equivalent to that above. See also Eq. (37).

  40. See (Fischer and Salant (2012), 17ff.), (Gerlagh (2011), 89ff.), (Grafton et al. (2012), 337ff.), (Hoel (2012), 210ff.), and (van der Ploeg and Withagen (2012), 351ff.).

  41. Term [3] of Eqs. (30a) and (35a).

References

  • Di Maria C, van der Werf E (2008) Carbon leakage revisited: unilateral climate policy with directed technical change. Environ Resour Econ 39(2):55–74

  • Eichner T, Pethig R (2011) Carbon leakage, the green paradox and perfect future markets. Int Econ Rev 52(3):767–805

    Article  Google Scholar 

  • Eichner T, Pethig R (2012) Flattening the carbon extraction path in unilateral cost-effective action. J Environ Econ Manag (in press)

  • Fischer C, Salant S (2012) Alternative climate policies and intertemporal emissions leakage: quantifying the green paradox. RFF Discussion Paper No. 12–16

  • Fischer C, Salant S (2013) Limits to limiting greenhouse gases: effects of intertemporal leakage, spatial leakage, and negative leakage. Online at: http://www-personal.umich.edu/~salant/florence_edited-2.pdf

  • Gerlagh R (2011) Too much oil. CESifo Econ Stud 57(1):79–102

    Article  Google Scholar 

  • Grafton RQ, Kompas T, Van Long N (2012) Substitution between biofules and fossil fuels: is there a green paradox? J Environ Econ Manag 64(3):328–341

    Article  Google Scholar 

  • Harstad B (2012) Buy coal! A case for supply-side environmental policy. J Polit Econ 120(1):77–115

    Article  Google Scholar 

  • Hoel M (2011) The supply side of \(CO_2\) with country heterogeneity. Scand J Econ 113(4):846–865

    Article  Google Scholar 

  • Hoel M (2012) Climate change and common sense: essays in honour of Tom Schelling. In: Hahn R, Ulph A (eds) Carbon taxes and the green paradox, Chapter 11. Oxford University Press, Oxford

    Google Scholar 

  • Hoel M (2013) Supply Side climate policy and the green paradox. CESifo working paper no. 4094

  • Hoel M, Jensen S (2012) Cutting costs of catching carbon: intertemporal effects under imperfect climate policy. Resour Energy Econ 34(4):680–695

    Article  Google Scholar 

  • Sinclair PJN (1992) High does nothing and rising is worse: carbon taxes should keep declining to cut harmful emissions. Manch Sch Econ Soc Stud 60(1):41–52

    Article  Google Scholar 

  • Sinclair PJN (1994) On the optimum trend of fossil fuel taxation. Oxf Econ Papers 46:869–877

    Google Scholar 

  • Sinn HW (2008) Public policies against global warming: a supply side approach. Int Tax Pub Financ 15(4):360–394

    Article  Google Scholar 

  • Society of Petroleum Engineers (2005) Glossary of terms used in petroleum reserves/resources. Online at: http://www.spe.org/spe-site/spe/spe/industry/reserves/GlossaryPetroleumReserves-ResourcesDefinitions_2005.pdf

  • Uplh A, Ulph D (1994) The optimal time path of a carbon tax. Oxf Econ Papers 46:857–868

    Google Scholar 

  • van der Ploeg F, Withagen C (2012) Is there really a green paradox? J Environ Econ Manag 64(3):342–363

    Article  Google Scholar 

  • van der Werf E, Di Maria C (2012) Imperfect environmental policy and polluting emissions: the green paradox and beyond. Int Rev Environ Resour Econ 6(2):153–194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Schopf.

Additional information

We would like to thank Thomas Eichner and Marco Runkel for helpful comments, and an anonymous reviewer for very helpful suggestions.

Appendix

Appendix

1.1 The Fossil Fuel Market

Throughout the appendix the commodity in period one is chosen as numeraire. Rearranging of (7)–(9), (20), and (21) yields:

$$\begin{aligned} p_{e1}-X^{E1}_{e_{F1}}-p_{x2}X^{E2}_{e_{F1}}&= 0, \end{aligned}$$
(39)
$$\begin{aligned} p_{e2}-p_{x2}X^{E2}_{e_{F2}}&= 0, \end{aligned}$$
(40)
$$\begin{aligned} e_{Ft}-\overline{e}_{At}-e_{Nt}&= 0,\quad t=1,2, \end{aligned}$$
(41)
$$\begin{aligned} X^{A1}_{\overline{e}_{A1}}-p_{e1}-\pi _1&= 0, \end{aligned}$$
(42)
$$\begin{aligned} p_{x2}X^{A2}_{\overline{e}_{A2}}-p_{e2}-\pi _2&= 0, \end{aligned}$$
(43)
$$\begin{aligned} X^{N1}_{e_{N1}}-p_{e1}&= 0, \end{aligned}$$
(44)
$$\begin{aligned} p_{x2}X^{N2}_{e_{N2}}-p_{e2}&= 0. \end{aligned}$$
(45)

Total differentiation of (39)–(45) yields:

$$\begin{aligned}&\displaystyle \mathrm{d}p_{e1}-X^{E1}_{e_{F1}e_{F1}}\mathrm{d}e_{F1}-X^{E2}_{e_{F1}}\mathrm{d}p_{x2} -p_{x2}\Bigg [X^{E2}_{e_{F1}e_{F1}}\mathrm{d}e_{F1}+X^{E2}_{e_{F1}e_{F2}}\mathrm{d}e_{F2}\Bigg ]=0,\end{aligned}$$
(46)
$$\begin{aligned}&\displaystyle \mathrm{d}p_{e2}-X^{E2}_{e_{F2}}\mathrm{d}p_{x2}-p_{x2}\Bigg [X^{E2}_{e_{F2}e_{F1}} \mathrm{d}e_{F1}+X^{E2}_{e_{F2}e_{F2}}\mathrm{d}e_{F2}\Bigg ]=0,\end{aligned}$$
(47)
$$\begin{aligned}&\displaystyle \mathrm{d}e_{Ft}-\mathrm{d}\overline{e}_{At}-\mathrm{d}e_{Nt}=0,\quad t=1,2,\end{aligned}$$
(48)
$$\begin{aligned}&\displaystyle X^{A1}_{\overline{e}_{A1}\overline{e}_{A1}}\mathrm{d}\overline{e}_{A1} -\mathrm{d}p_{e1}-\mathrm{d}\pi _1=0,\end{aligned}$$
(49)
$$\begin{aligned}&\displaystyle X^{A2}_{\overline{e}_{A2}}\mathrm{d}p_{x2}+p_{x2}X^{A2}_{\overline{e}_{A2} \overline{e}_{A2}}\mathrm{d}\overline{e}_{A2}-\mathrm{d}p_{e2}-\mathrm{d}\pi _2=0, \end{aligned}$$
(50)
$$\begin{aligned}&\displaystyle \frac{\widehat{e}_{N1}}{\widehat{p}_{e1}}-\eta _{N1}=0,\end{aligned}$$
(51)
$$\begin{aligned}&\displaystyle \frac{\widehat{e}_{N2}}{\widehat{p}_{e2}-\widehat{p}_{x2}}-\eta _{N2}=0, \end{aligned}$$
(52)

where \(\eta _{Nt}:=\frac{X^{Nt}_{e_{Nt}}}{e_{Nt}X^{Nt}_{e_{Nt} e_{Nt}}}<0\) for \(t=1,2\).

Inserting (51) and (52) in (48) and afterwards inserting in (46)–(47) yields:

$$\begin{aligned}&\mathrm{d}p_{e1}-X^{E1}_{e_{F1}e_{F1}}\Bigg [\mathrm{d}\overline{e}_{A1}+e_{N1} \eta _{N1}\widehat{p}_{e1}\Bigg ]-X^{E2}_{e_{F1}}\mathrm{d}p_{x2}-p_{x2} \Bigg [X^{E2}_{e_{F1}e_{F1}}\Bigg [\mathrm{d}\overline{e}_{A1}\nonumber \\&\left. \quad +\,e_{N1}\eta _{N1}\widehat{p}_{e1}\Bigg ]+X^{E2}_{e_{F1}e_{F2}}\Bigg [\mathrm{d}\overline{e}_{A2}+e_{N2}\eta _{N2}\left[ \widehat{p}_{e2}- \widehat{p}_{x2}\right] \Bigg ]\right] =0,\end{aligned}$$
(53)
$$\begin{aligned}&\mathrm{d}p_{e2}-X^{E2}_{e_{F2}}\mathrm{d}p_{x2}-p_{x2}\Bigg [X^{E2}_{e_{F2} e_{F1}}\Bigg [\mathrm{d}\overline{e}_{A1}+e_{N1}\eta _{N1}\widehat{p}_{e1}\Bigg ] \nonumber \\&\quad +\,X^{E2}_{e_{F2}e_{F2}}\Bigg [\mathrm{d}\overline{e}_{A2}+e_{N2}\eta _{N2}\left[ \widehat{p}_{e2}-\widehat{p}_{x2} \right] \Bigg ]\Bigg ]=0. \end{aligned}$$
(54)

Inserting (53) in (54) yields:

$$\begin{aligned} \mathrm{d}p_{e1}&= -\frac{\frac{p_{e1}}{e_{N1}\eta _{N1}}[\Gamma _0-p_{e1} [p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]]}{\Gamma _0}\mathrm{d}\overline{e}_{A1}\nonumber \\&+\,\,\frac{p_{e1}p_{e2}p_{x2}X^{E2}_{e_{F1}e_{F2}}}{\Gamma _0}\mathrm{d}\overline{e}_{A2}+\frac{p_{e1}X^{E2}_{e_{F1}}[p_{e2}-p_{x2}X^{E2}_{ e_{F2}e_{F2}}e_{N2}\eta _{N2}]}{\Gamma _0}\mathrm{d}p_{x2},\end{aligned}$$
(55)
$$\begin{aligned} \mathrm{d}p_{e2}&= \frac{p_{e1}p_{e2}p_{x2}X^{E2}_{e_{F2}e_{F1}}}{\Gamma _0} \mathrm{d}\overline{e}_{A1}\nonumber \\&-\,\,\frac{\frac{p_{e2}}{e_{N2}\eta _{N2}}[\Gamma _0-p_{e2}[p_{e1} -[X^{E1}_{e_{F1}e_{F1}}+p_{x2}X^{E2}_{e_{F1}e_{F1}}]e_{N1} \eta _{N1}]]}{\Gamma _0}\mathrm{d}\overline{e}_{A2}\nonumber \\&+\,\,\frac{X^{E2}_{e_{F2}} \Gamma _3}{\Gamma _0}\mathrm{d}p_{x2}, \end{aligned}$$
(56)

where \(\Gamma _0=[p_{e1}-[X^{E1}_{e_{F1}e_{F1}}+p_{x2} X^{E2}_{e_{F1}e_{F1}}]e_{N1}\eta _{N1}][p_{e2}-p_{x2} X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]-p_{x2}X^{E2}_{e_{F1} e_{F2}}e_{N1}\eta _{N1}\cdot p_{x2}X^{E2}_{e_{F2}e_{F1}} e_{N2}\eta _{N2}\) and \(\Gamma _3=\Gamma _0+\frac{p_{x2} X^{E2}_{e_{F1}}}{p_{e2}}\cdot p_{x2}X^{E2}_{e_{F2} e_{F1}}e_{N1}\eta _{N1}\cdot p_{e2}\).

Inserting (51) and (52) in (48) and afterwards inserting (55) and (56) yields:

$$\begin{aligned} \mathrm{d}e_{F1}&= \frac{p_{e1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2} \eta _{N2}]}{\Gamma _0}\mathrm{d}\overline{e}_{A1}+\frac{p_{e2}p_{x2} X^{E2}_{e_{F1}e_{F2}}e_{N1}\eta _{N1}}{\Gamma _0}\mathrm{d}\overline{e}_{A2} \nonumber \\&+\,\,\frac{X^{E2}_{e_{F1}}e_{N1}\eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2} e_{F2}}e_{N2}\eta _{N2}]}{\Gamma _0}\mathrm{d}p_{x2},\end{aligned}$$
(57)
$$\begin{aligned} \mathrm{d}e_{F2}&= \frac{p_{e1}p_{x2}X^{E2}_{e_{F2}e_{F1}}e_{N2}\eta _{N2}}{\Gamma _0}\mathrm{d}\overline{e}_{A1}+\frac{p_{e2}[p_{e1}-[X^{E1}_{e_{F1} e_{F1}}+p_{x2}X^{E2}_{e_{F1}e_{F1}}]e_{N1}\eta _{N1}]}{\Gamma _0}\mathrm{d}\overline{e}_{A2}\nonumber \\&+\,\,\frac{X^{E2}_{e_{F1}}e_{N1}\eta _{N1}[p_{x2}X^{E2}_{e_{F2}e_{F1}} e_{N2}\eta _{N2}]}{\Gamma _0}\mathrm{d}p_{x2}. \end{aligned}$$
(58)

Adding (57)–(58) yields:

$$\begin{aligned} \mathrm{d}e_{F1}+\mathrm{d}e_{F2}=\mathrm{d}e_{F\varSigma }=\frac{p_{e1}\Gamma _1}{\Gamma _0}\mathrm{d}\overline{e}_{A1}+\frac{p_{e2}\Gamma _2}{\Gamma _0}\mathrm{d}\overline{e}_{A2}+\frac{X^{E2}_{e_{F1}}e_{N1}\eta _{N1}\Gamma _1}{\Gamma _0}\mathrm{d}p_{x2}, \end{aligned}$$
(59)

where \(\Gamma _1=p_{e2}+[p_{x2}X^{E2}_{e_{F2}e_{F1}}-p_{x2} X^{E2}_{e_{F2}e_{F2}}]e_{N2}\eta _{N2}\) and \(\Gamma _2=p_{e1} -[X^{E1}_{e_{F1}e_{F1}}+p_{x2}X^{E2}_{e_{F1}e_{F1}}-p_{x2} X^{E2}_{e_{F1}e_{F2}}]e_{N1}\eta _{N1}\).

1.2 The Commodity Market

The relative commodity demand of \(A,N,F \text{ and } E\) is equal to:

$$\begin{aligned} q^d=\frac{\sum x_{i1}}{\sum x_{i2}}=\frac{x_{A1}+x_{N1}+x_{F1} +X^{E1}}{x_{A2}+x_{N2}+x_{F2}+X^{E2}},\quad i=A,N,F,E. \end{aligned}$$
(60)

Inserting (22) and (27) in (60) yields:

$$\begin{aligned} q^d=\left( \frac{\alpha _1p_{x2}}{\alpha _2}\right) ^\sigma -\left( \frac{\alpha _1p_{x2}}{\alpha _2}\right) ^\sigma \frac{X^{E2}}{X^{A2}+X^{N2}}+\frac{X^{E1}}{X^{A2}+X^{N2}}. \end{aligned}$$
(61)

Total differentiation of (61) and afterwards inserting (39)–(45) and (27) yields:

$$\begin{aligned} \mathrm{d}{q}^d&= \left( \frac{\alpha _1p_{x2}}{\alpha _2}\right) ^\sigma \sigma \widehat{p}_{x2}-\left( \frac{\alpha _1p_{x2}}{\alpha _2}\right) ^\sigma \sigma \widehat{p}_{x2}\frac{X^{E2}}{X^{A2}+X^{N2}}\nonumber \\&-\left( \frac{\alpha _1p_{x2}}{\alpha _2}\right) ^\sigma \frac{\mathrm{d}X^{E2}(X^{A2}+X^{N2})-X^{E2}(\mathrm{d}X^{A2}+\mathrm{d}X^{N2})}{(X^{A2} +X^{N2})^2}\nonumber \\&+\,\,\frac{\mathrm{d}X^{E1}(X^{A2}+X^{N2})-X^{E1}(\mathrm{d}X^{A2}+\mathrm{d}X^{N2})}{(X^{A2}+X^{N2})^2}\nonumber \\&= \frac{x^s_{A1}+x^s_{N1}-x_{E1}}{x^s_{A2}+x^s_{N2}}\sigma \widehat{p}_{x2}-\frac{\frac{\pi _2}{p_{x2}}\left( \frac{x^s_{A1} +x^s_{N1}}{x^s_{A2}+x^s_{N2}}-\frac{x^s_{A1}+x^s_{N1}-x_{E1}}{x^s_{A2} +x^s_{N2}-x_{E2}}\right) }{x^s_{A2}+x^s_{N2}}\mathrm{d}{\overline{e}}_{A2} \nonumber \\&+\,\,\frac{X^{E1}_{e_{F1}}-X^{E2}_{e_{F1}}\cdot \frac{x^s_{A1}+x^s_{N1} -x_{E1}}{x^s_{A2}+x^s_{N2}-x_{E2}}}{x^s_{A2}+x^s_{N2}}\mathrm{d}{e}_{F1} -\frac{X^{E2}_{e_{F2}}\cdot \frac{x^s_{A1}+x^s_{N1}}{x^s_{A2} +x^s_{N2}}}{x^s_{A2}+x^s_{N2}}\mathrm{d}{e}_{F2}. \end{aligned}$$
(62)

The relative commodity supply of \(A \text{ and } N\) is equal to:

$$\begin{aligned} q^s=\frac{\sum x^s_{j1}}{\sum x^s_{j2}}=\frac{X^{A1}+X^{N1}}{X^{A2}+X^{N2}},\quad j=A,N. \end{aligned}$$
(63)

Total differentiation of (63) and afterwards inserting (39)–(45) yields:

$$\begin{aligned}&\!\!\!\mathrm{d}{q}^s=\frac{(X^{A1}_{\overline{e}_{A1}}\mathrm{d}{\overline{e}}_{A1} +X^{N1}_{e_{N1}}\mathrm{d}{e}_{N1})(X^{A2}+X^{N2})-(X^{A1}+X^{N1}) (X^{A2}_{\overline{e}_{A2}}\mathrm{d}{\overline{e}}_{A2}+X^{N2}_{e_{N2}} \mathrm{d}{e}_{N2})}{(X^{A2}+X^{N2})^2}\nonumber \\&\,=\frac{\pi _1}{x^s_{A2}+x^s_{N2}}\mathrm{d}{\overline{e}}_{A1}{-} \frac{\frac{\pi _2}{p_{x2}}\cdot \frac{x^s_{A1}{+}x^s_{N1}}{x^s_{A2} +x^s_{N2}}}{x^s_{A2}+x^s_{N2}}\mathrm{d}{\overline{e}}_{A2}+\,\frac{X^{E1}_{e_{F1}}+p_{x2}X^{E2}_{e_{F1}}}{x^s_{A2}+x^s_{N2}} \mathrm{d}{e}_{F1}{-}\frac{X^{E2}_{e_{F2}}\cdot \frac{x^s_{A1}{+}x^s_{N1}}{x^s_{A2}+x^s_{N2}}}{x^s_{A2}+x^s_{N2}}\mathrm{d}{e}_{F2}.\nonumber \\ \end{aligned}$$
(64)

Equating (62) and (64) yields:

$$\begin{aligned} \mathrm{d}{p}_{x2}=\frac{p_{x2}}{\sigma }\left( \frac{\pi _1}{x^s_{A1} +x^s_{N1}-x_{E1}}\mathrm{d}{\overline{e}}_{A1}-\frac{\pi _2}{p_{x2} (x^s_{A2}+x^s_{N2}-x_{E2})}\mathrm{d}{\overline{e}}_{A2}+\Theta \mathrm{d}{e}_{F1}\right) , \end{aligned}$$
(65)

where \(\Theta =\frac{p_{x2}X^{E2}_{e_{F1}}}{x^s_{A1}+x^s_{N1}-x_{E1}} +\frac{p_{x2}X^{E2}_{e_{F1}}}{p_{x2}(x^s_{A2}+x^s_{N2}-x_{E2})}\).

1.3 The Combined Market

1.3.1 The Quantities on the Combined Market

Inserting (65) in (57) for \(\mathrm{d}{\overline{e}}_{A2}=0\) yields:

$$\begin{aligned} \mathrm{d}{e}_{F1}&= \frac{p_{e1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2} \eta _{N2}]}{\Gamma _0}\mathrm{d}\overline{e}_{A1}+\frac{X^{E2}_{e_{F1}}e_{N1} \eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}{\Gamma _0}\nonumber \\&\cdot \frac{p_{x2}}{\sigma }\left( \frac{\pi _1}{x^s_{A1}+x^s_{N1} -x_{E1}}\mathrm{d}\overline{e}_{A1}+\Theta \mathrm{d}{e}_{F1}\right) \nonumber \\&= \frac{[p_{e1}\sigma +p_{x2}X^{E2}_{e_{F1}}\frac{\pi _1e_{N1}\eta _{N1}}{x^s_{A1}+x^s_{N1}-x_{E1}}][p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2} \eta _{N2}]}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1} \eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]} \mathrm{d}\overline{e}_{A1}. \end{aligned}$$
(66)

Inserting (65) and (66) in (58) for \(\mathrm{d}{\overline{e}}_{A2}=0\) yields:

$$\begin{aligned} \mathrm{d}{e}_{F2}&= \frac{p_{e1}p_{x2}X^{E2}_{e_{F2}e_{F1}}e_{N2} \eta _{N2}}{\Gamma _0}\mathrm{d}\overline{e}_{A1}+\frac{X^{E2}_{e_{F1}} e_{N1}\eta _{N1}[p_{x2}X^{E2}_{e_{F2}e_{F1}}e_{N2}\eta _{N2}]}{\Gamma _0} \nonumber \\&\cdot \frac{p_{x2}}{\sigma }\left( \frac{\pi _1}{x^s_{A1}+x^s_{N1} -x_{E1}}\mathrm{d}\overline{e}_{A1}\right. \nonumber \\&\left. \quad \quad \quad +\,\,\Theta \frac{[p_{e1}\sigma +p_{x2}X^{E2}_{e_{F1}} \frac{\pi _1e_{N1}\eta _{N1}}{x^s_{A1}+x^s_{N1}-x_{E1}}] [p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1}\eta _{N1}[p_{e2} -p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}\mathrm{d}\overline{e}_{A1} \right) \nonumber \\&= \frac{[p_{e1}\sigma +p_{x2}X^{E2}_{e_{F1}}\frac{\pi _1e_{N1} \eta _{N1}}{x^s_{A1}+x^s_{N1}-x_{E1}}]p_{x2}X^{E2}_{e_{F2}e_{F1}} e_{N2}\eta _{N2}}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1} \eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]} \mathrm{d}\overline{e}_{A1}. \end{aligned}$$
(67)

Adding (66) and (67) yields:

$$\begin{aligned} \mathrm{d}{e}_{F1}+\mathrm{d}{e}_{F2}=\mathrm{d}{e}_{F\varSigma }=\frac{[p_{e1}\sigma \!\!+\!\!p_{x2}X^{E2}_{e_{F1}}\frac{\pi _1e_{N1}\eta _{N1}}{x^s_{A1}\!+\!x^s_{N1} \!-\!x_{E1}}]\Gamma _1}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1}\eta _{N1}[p_{e2}\!-\!p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]} \mathrm{d}\overline{e}_{A1}.\qquad \end{aligned}$$
(68)

Inserting (66) and (68) in (29) yields:

$$\begin{aligned}&\mathrm{d}D(e_{F1},e_{F\varSigma })\gtreqless 0\nonumber \\&\Leftrightarrow \quad \Bigg [p_{e1}\sigma +p_{x2}X^{E2}_{e_{F1}} \frac{\pi _1e_{N1}\eta _{N1}}{x^s_{A1}\!+\!x^s_{N1}-x_{E1}}\Bigg ]\Bigg [[p_{e2} -p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]+\lambda \Gamma _1\Bigg ] \mathrm{d}\overline{e}_{A1}\gtreqless 0.\nonumber \\ \end{aligned}$$
(69)

Inserting (65) in (57) for \(\mathrm{d}{\overline{e}}_{A1}=0\) yields:

$$\begin{aligned} \mathrm{d}{e}_{F1}&= \frac{p_{e2}p_{x2}X^{E2}_{e_{F1}e_{F2}}e_{N1} \eta _{N1}}{\Gamma _0}\mathrm{d}\overline{e}_{A2}+\frac{X^{E2}_{e_{F1}} e_{N1}\eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}{\Gamma _0}\nonumber \\&\cdot \frac{p_{x2}}{\sigma }\left( -\frac{\pi _2}{p_{x2}(x^s_{A2} +x^s_{N2}-x_{E2})}\mathrm{d}\overline{e}_{A2}+\Theta \mathrm{d}e_{F1}\right) \nonumber \\&= \frac{p_{e2}\sigma p_{x2}X^{E2}_{e_{F1}e_{F2}}e_{N1}\eta _{N1}}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1}\eta _{N1}[p_{e2} -p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}\mathrm{d}\overline{e}_{A2} \nonumber \\&-\frac{p_{x2}X^{E2}_{e_{F1}}\frac{\pi _2e_{N1}\eta _{N1}}{p_{x2} (x^s_{A2}+x^s_{N2}-x_{E2})}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}} e_{N2}\eta _{N2}]}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1} \eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}\mathrm{d}\overline{e}_{A2}. \end{aligned}$$
(70)

Inserting (65) and (70) in (58) for \(\mathrm{d}{\overline{e}}_{A1}=0\) yields:

$$\begin{aligned} \mathrm{d}{e}_{F2}&= \frac{p_{e2}[p_{e1}-[X^{E1}_{e_{F1}e_{F1}}+p_{x2} X^{E2}_{e_{F1}e_{F1}}]e_{N1}\eta _{N1}]}{\Gamma _0}\mathrm{d}\overline{e}_{A2} \nonumber \\&+\,\,\frac{X^{E2}_{e_{F1}}e_{N1}\eta _{N1}[p_{x2}X^{E2}_{e_{F2}e_{F1}} e_{N2}\eta _{N2}]}{\Gamma _0}\cdot \frac{p_{x2}}{\sigma }\left( -\frac{\pi _2}{p_{x2}(x^s_{A2}+x^s_{N2}-x_{E2})}\mathrm{d}\overline{e}_{A2} \right. \nonumber \\&+\,\,\Theta \frac{p_{e2}\sigma p_{x2}X^{E2}_{e_{F1}e_{F2}}e_{N1}\eta _{N1}}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1}\eta _{N1}[p_{e2} -p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}\mathrm{d}\overline{e}_{A2} \nonumber \\&\left. -\,\,\Theta \frac{p_{x2}X^{E2}_{e_{F1}}\frac{\pi _2e_{N1}\eta _{N1}}{p_{x2}(x^s_{A2}+x^s_{N2}-x_{E2})}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}} e_{N2}\eta _{N2}]}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1} \eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}\mathrm{d}\overline{e}_{A2}\right) \nonumber \\&= \frac{p_{e2}\sigma [p_{e1}-[X^{E1}_{e_{F1}e_{F1}}+p_{x2}X^{E2}_{e_{F1} e_{F1}}]e_{N1}\eta _{N1}]}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}} \Theta e_{N1}\eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2} \eta _{N2}]}\mathrm{d}\overline{e}_{A2}\nonumber \\&-\frac{p_{x2}X^{E2}_{e_{F1}}\frac{\pi _2e_{N1}\eta _{N1}}{p_{x2} (x^s_{A2}+x^s_{N2}-x_{E2})}p_{x2}X^{E2}_{e_{F2}e_{F1}}e_{N2}\eta _{N2} +p_{e2}p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1}\eta _{N1}}{\sigma \Gamma _0 -p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1}\eta _{N1}[p_{e2}-p_{x2} X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}\mathrm{d}\overline{e}_{A2}.\nonumber \\ \end{aligned}$$
(71)

Adding (70) and (71) yields:

$$\begin{aligned} \mathrm{d}{e}_{F1}\!{+}\!\mathrm{d}{e}_{F2}\!=\!\mathrm{d}{e}_{F\varSigma }\!=\!\frac{p_{e2}\sigma \Gamma _2{-}p_{x2}X^{E2}_{e_{F1}}\frac{\pi _2e_{N1}\eta _{N1}}{p_{x2} (x^s_{A2}\!+\!x^s_{N2}\!-\!x_{E2})}\Gamma _1\!-\!p_{e2}p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1}\eta _{N1}}{\sigma \Gamma _0\!-\!p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1}\eta _{N1}[p_{e2}\!-\!p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2} \eta _{N2}]}\mathrm{d}\overline{e}_{A2}.\nonumber \\ \end{aligned}$$
(72)

Inserting (70) and (72) in (29) yields:

$$\begin{aligned}&\mathrm{d}D(e_{F1},e_{F\varSigma })\gtreqless 0\nonumber \\&\quad \Leftrightarrow \quad \Bigg [p_{e2}\sigma [p_{x2}X^{E2}_{e_{F1}e_{F2}} e_{N1}\eta _{N1}+\lambda \Gamma _2]-p_{x2}X^{E2}_{e_{F1}}\frac{\pi _2 e_{N1}\eta _{N1}}{p_{x2}(x^s_{A2}+x^s_{N2}-x_{E2})}\nonumber \\&\qquad \qquad \cdot [[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}] +\lambda \Gamma _1]-\lambda p_{e2}p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1} \eta _{N1}\Bigg ]\mathrm{d}\overline{e}_{A2}\gtreqless 0.\nonumber \\ \end{aligned}$$
(73)

1.3.2 The Prices on the Combined Market

Inserting (66) in (65) for \(\mathrm{d}{\overline{e}}_{A2}=0\) yields:

$$\begin{aligned} \frac{\mathrm{d}{p}_{x2}}{\mathrm{d}{\overline{e}}_{A1}}&= \frac{p_{x2}}{\sigma } \left( \frac{\pi _1}{x^s_{A1}+x^s_{N1}-x_{E1}}\right. \nonumber \\&\left. +\,\,\Theta \frac{[p_{e1}\sigma +p_{x2}X^{E2}_{e_{F1}} \frac{\pi _1e_{N1}\eta _{N1}}{x^s_{A1}+x^s_{N1}-x_{E1}}][p_{e2} -p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}{\sigma \Gamma _0 -p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1}\eta _{N1}[p_{e2}-p_{x2} X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}\right) \nonumber \\&= \frac{p_{x2}\frac{\pi _1}{x^s_{A1}+x^s_{N1}-x_{E1}}\Gamma _0 +p_{e1}p_{x2}\Theta [p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2} \eta _{N2}]}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1} \eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]} \nonumber \\&> 0. \end{aligned}$$
(74)

Inserting (70) in (65) for \(\mathrm{d}{\overline{e}}_{A1}=0\) yields:

$$\begin{aligned} \frac{\mathrm{d}{p}_{x2}}{\mathrm{d}{\overline{e}}_{A2}}&= \frac{p_{x2}}{\sigma } \left( -\frac{\pi _2}{p_{x2}(x^s_{A2}+x^s_{N2}-x_{E2})}\right. \nonumber \\&\left. +\,\,\Theta \frac{p_{e2}\sigma p_{x2}X^{E2}_{e_{F1}e_{F2}}e_{N1} \eta _{N1}-p_{x2}X^{E2}_{e_{F1}}\frac{\pi _2e_{N1}\eta _{N1}}{p_{x2} (x^s_{A2}+x^s_{N2}-x_{E2})}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2} \eta _{N2}]}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1}\eta _{N1} [p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}\right) \nonumber \\&= -\frac{p_{x2}\frac{\pi _2}{p_{x2}(x^s_{A2}+x^s_{N2}-x_{E2})} \Gamma _0-p_{e2}p_{x2}\Theta p_{x2}X^{E2}_{e_{F1}e_{F2}}e_{N1} \eta _{N1}}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1} \eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}\nonumber \\&< 0. \end{aligned}$$
(75)

Inserting (74) in (55) for \(\mathrm{d}{\overline{e}}_{A2}=0\) yields:

$$\begin{aligned} \frac{\mathrm{d}{p}_{e1}}{\mathrm{d}{\overline{e}}_{A1}}&= -\frac{\frac{p_{e1}}{e_{N1}\eta _{N1}}[\Gamma _0-p_{e1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}} e_{N2}\eta _{N2}]]}{\Gamma _0}\nonumber \\&\quad +\,\,\frac{p_{e1}X^{E2}_{e_{F1}}[p_{e2}-p_{x2} X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}{\Gamma _0}\nonumber \\&\cdot \frac{p_{x2}\frac{\pi _1}{x^s_{A1}+x^s_{N1}-x_{E1}}\Gamma _0 +p_{e1}p_{x2}\Theta [p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2} \eta _{N2}]}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1} \eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}\nonumber \\&= -\,\,\frac{\frac{p_{e1}}{e_{N1}\eta _{N1}}\sigma [\Gamma _0-p_{e1} [p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]]}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1}\eta _{N1}[p_{e2} -p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}\nonumber \\&+\,\,\frac{p_{e1}p_{x2}X^{E2}_{e_{F1}}[\frac{\pi _1}{x^s_{A1}+x^s_{N1} -x_{E1}}+\Theta ][p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1}\eta _{N1}[p_{e2} -p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}\nonumber \\&> 0. \end{aligned}$$
(76)

Inserting (74) in (56) for \(\mathrm{d}{\overline{e}}_{A2}=0\) yields:

$$\begin{aligned} \frac{\mathrm{d}{p}_{e2}}{\mathrm{d}{\overline{e}}_{A1}}&= \frac{p_{e1}p_{e2} p_{x2}X^{E2}_{e_{F2}e_{F1}}}{\Gamma _0}+\frac{X^{E2}_{e_{F2}}\Gamma _3}{\Gamma _0}\nonumber \\&\cdot \frac{p_{x2}\frac{\pi _1}{x^s_{A1}+x^s_{N1}-x_{E1}}\Gamma _0 +p_{e1}p_{x2}\Theta [p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2} \eta _{N2}]}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1} \eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}\nonumber \\&= \frac{p_{e1}p_{e2}\sigma p_{x2}X^{E2}_{e_{F2}e_{F1}}+p_{x2} X^{E2}_{e_{F2}}\frac{\pi _1}{x^s_{A1}+x^s_{N1}-x_{E1}}\Gamma _3 +p_{e1}p_{x2}X^{E2}_{e_{F2}}\Theta [p_{e2}-p_{x2}X^{E2}_{e_{F2} e_{F2}}e_{N2}\eta _{N2}]}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}} \Theta e_{N1}\eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2} \eta _{N2}]}\nonumber \\&> 0\Leftarrow \Gamma _3>0. \end{aligned}$$
(77)

Inserting (75) in (55) for \(\mathrm{d}{\overline{e}}_{A1}=0\) yields:

$$\begin{aligned} \frac{\mathrm{d}{p}_{e1}}{\mathrm{d}{\overline{e}}_{A2}}&= \frac{p_{e1}p_{e2} p_{x2}X^{E2}_{e_{F1}e_{F2}}}{\Gamma _0}+\frac{p_{e1}X^{E2}_{e_{F1}} [p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}{\Gamma _0}\nonumber \\&\cdot -\,\frac{p_{x2}\frac{\pi _2}{p_{x2}(x^s_{A2}+x^s_{N2}-x_{E2})} \Gamma _0-p_{e2}p_{x2}\Theta p_{x2}X^{E2}_{e_{F1}e_{F2}}e_{N1} \eta _{N1}}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1} \eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}\nonumber \\&= \frac{p_{e1}p_{e2}\sigma p_{x2}X^{E2}_{e_{F1}e_{F2}}-p_{e1}p_{x2} X^{E2}_{e_{F1}}\frac{\pi _2}{p_{x2}(x^s_{A2}+x^s_{N2}-x_{E2})}[p_{e2} -p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]}{\sigma \Gamma _0-p_{x2} X^{E2}_{e_{F1}}\Theta e_{N1}\eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2} e_{F2}}e_{N2}\eta _{N2}]}\nonumber \\&= \frac{p_{e1}}{e_{N1}\eta _{N1}}\cdot \frac{\mathrm{d}{e}_{F1}}{\mathrm{d}{\overline{e}}_{A2}}\gtreqless 0\Leftrightarrow \frac{\mathrm{d}{e}_{F1}}{\mathrm{d}{\overline{e}}_{A2}}\lesseqgtr 0. \end{aligned}$$
(78)

Inserting (75) in (56) for \(\mathrm{d}{\overline{e}}_{A1}=0\) yields:

$$\begin{aligned} \frac{\mathrm{d}{p}_{e2}}{\mathrm{d}{\overline{e}}_{A2}}&= -\,\,\frac{\frac{p_{e2}}{e_{N2}\eta _{N2}}[\Gamma _0-p_{e2}[p_{e1}-[X^{E1}_{e_{F1}e_{F1}} +p_{x2}X^{E2}_{e_{F1}e_{F1}}]e_{N1}\eta _{N1}]]}{\Gamma _0} +\frac{X^{E2}_{e_{F2}}\Gamma _3}{\Gamma _0}\nonumber \\&\cdot -\frac{p_{x2}\frac{\pi _2}{p_{x2}(x^s_{A2}+x^s_{N2}-x_{E2})} \Gamma _0-p_{e2}p_{x2}\Theta p_{x2}X^{E2}_{e_{F1}e_{F2}}e_{N1} \eta _{N1}}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1} \eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]} \nonumber \\&= -\frac{\frac{p_{e2}}{e_{N2}\eta _{N2}}\sigma [\Gamma _0-p_{e2} [p_{e1}-[X^{E1}_{e_{F1}e_{F1}}+p_{x2}X^{E2}_{e_{F1}e_{F1}}]e_{N1} \eta _{N1}]]}{\sigma \Gamma _0-p_{x2}X^{E2}_{e_{F1}}\Theta e_{N1} \eta _{N1}[p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}]} \nonumber \\&\!-\!\frac{p_{x2}X^{E2}_{e_{F2}}\frac{\pi _2}{p_{x2}(x^s_{A2}+x^s_{N2} \!-\!x_{E2})}\Gamma _3{-}p_{e2}p_{x2}\Theta p_{x2}e_{N1}\eta _{N1} [X^{E2}_{e_{F2}}X^{E2}_{e_{F1}e_{F2}}\!-\!X^{E2}_{e_{F1}} X^{E2}_{e_{F2}e_{F2}}]}{\sigma \Gamma _0\!{-}\!p_{x2}X^{E2}_{e_{F1}} \Theta e_{N1}\eta _{N1}[p_{e2}\!-\!p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2} \eta _{N2}]}.\nonumber \\ \end{aligned}$$
(79)

1.4 The Gammas

$$\begin{aligned} \Gamma _0&= \Bigg [p_{e1}-\Bigg [X^{E1}_{e_{F1}e_{F1}}+p_{x2}X^{E2}_{e_{F1}e_{F1}}\Bigg ] e_{N1}\eta _{N1}\Bigg ]\Bigg [p_{e2}-p_{x2}X^{E2}_{e_{F2}e_{F2}}e_{N2}\eta _{N2}\Bigg ] \nonumber \\&-p_{x2}X^{E2}_{e_{F1}e_{F2}}e_{N1}\eta _{N1}\cdot p_{x2}X^{E2}_{e_{F2} e_{F1}}e_{N2}\eta _{N2}\nonumber \\&= \frac{p_{e2}e_{N2}\left| \eta _{N2}\right| p_{e1}e_{N1}\left| \eta _{N1}\right| }{e_{F1}\eta _{F1,2}e_{F2}\eta _{F2,1}}\cdot \left[ \left( \frac{e_{F1} \eta _{F1,2}}{e_{N2}\left| \eta _{N2}\right| }+\frac{e_{F1}\eta _{F1,2}}{e_{F2} \eta _{F2,2}}\right) \right. \\&\quad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \left. \cdot \left( \frac{e_{F2}\eta _{F2,1}}{e_{N1} \left| \eta _{N1}\right| }+\frac{e_{F2}\eta _{F2,1}}{e_{F1}\eta _{F1,1}} \right) -1\right] ,\end{aligned}$$
(80)
$$\begin{aligned} \Gamma _1&= p_{e2}+\Bigg [p_{x2}X^{E2}_{e_{F2}e_{F1}}-p_{x2}X^{E2}_{e_{F2} e_{F2}}\Bigg ]e_{N2}\eta _{N2}\nonumber \\&= \frac{p_{e2}e_{N2}\left| \eta _{N2}\right| }{e_{F1}\eta _{F1,2}}\cdot \left( \frac{e_{F1}\eta _{F1,2}}{e_{N2}\left| \eta _{N2}\right| }+\frac{e_{F1} \eta _{F1,2}}{e_{F2}\eta _{F2,2}}-1\right) ,\nonumber \\&\gtreqless 0\quad \Leftrightarrow \quad \frac{e_{F1}\eta _{F1,2}}{e_{N2} \left| \eta _{N2}\right| }+\frac{e_{F1}\eta _{F1,2}}{e_{F2}\eta _{F2,2}} \gtreqless 1,\end{aligned}$$
(81)
$$\begin{aligned} \Gamma _2&= p_{e1}-\Bigg [X^{E1}_{e_{F1}e_{F1}}+p_{x2}X^{E2}_{e_{F1}e_{F1}} -p_{x2}X^{E2}_{e_{F1}e_{F2}}\Bigg ]e_{N1}\eta _{N1}\nonumber \\&= \frac{p_{e1}e_{N1}\left| \eta _{N1}\right| }{e_{F2}\eta _{F2,1}}\cdot \left( \frac{e_{F2}\eta _{F2,1}}{e_{N1}\left| \eta _{N1}\right| }+\frac{e_{F2} \eta _{F2,1}}{e_{F1}\eta _{F1,1}}-1\right) ,\\&\gtreqless 0\quad \Leftrightarrow \quad \frac{e_{F2}\eta _{F2,1}}{e_{N1} \left| \eta _{N1}\right| }+\frac{e_{F2}\eta _{F2,1}}{e_{F1}\eta _{F1,1}} \gtreqless 1,\end{aligned}$$
(82)
$$\begin{aligned} \Gamma _3&= \Gamma _0+\frac{p_{x2}X^{E2}_{e_{F1}}}{p_{e2}}\cdot p_{x2}X^{E2}_{e_{F2}e_{F1}}e_{N1}\eta _{N1}\cdot p_{e2} \nonumber \\&= \frac{p_{e2}e_{N2}\left| \eta _{N2}\right| p_{e1}e_{N1}\left| \eta _{N1}\right| }{e_{F1}\eta _{F1,2}e_{F2}\eta _{F2,1}}\cdot \left[ \left( \frac{e_{F1} \eta _{F1,2}}{e_{N2}\left| \eta _{N2}\right| }+\frac{e_{F1}\eta _{F1,2}}{e_{F2} \eta _{F2,2}}\right) \right. \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \left. \cdot \left( \frac{e_{F2}\eta _{F2,1}}{e_{N1} \left| \eta _{N1}\right| }+\frac{e_{F2}\eta _{F2,1}}{e_{F1}\eta _{F1,1}} \!\right) -1\!-\!\frac{p_{x2}X^{E2}_{e_{F1}}}{p_{e1}}\cdot \frac{e_{F2} \eta _{F2,1}}{e_{N2}\left| \eta _{N2}\right| }\!\right] \!,\nonumber \\&> \underline{\Gamma _3}=p_{x2}X^{E2}_{e_{F1}}[p_{x2}X^{E2}_{e_{F2}} +p_{x2}X^{E2}_{e_{F2}e_{F1}}e_{N1}\eta _{N1}]\nonumber \\&= p_{x2}X^{E2}_{e_{F1}}\cdot p_{x2}X^{E2}_{e_{F2}e_{F1}}e_{N1} \left| \eta _{N1}\right| \left( \frac{e_{F1}\left| \eta _{F1,2}\right| }{e_{N1} \left| \eta _{N1}\right| }-1\right) ,\nonumber \\&\gtreqless 0\quad \Leftrightarrow \quad \frac{e_{F1}\eta _{F1,2}}{e_{N1} \left| \eta _{N1}\right| }\gtreqless 1, \end{aligned}$$
(83)

where \({\underline{\Gamma }_3}\) is a lower limit for \(\Gamma _3\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, H., Schopf, M. Unilateral Climate Policy: Harmful or Even Disastrous?. Environ Resource Econ 58, 155–178 (2014). https://doi.org/10.1007/s10640-013-9697-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10640-013-9697-0

Keywords

JEL Classification

Navigation