, Volume 59, Issue 1-3, pp 223-230
Date: 04 Jan 2011

On zeros of Kloosterman sums

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


A Kloosterman zero is a non-zero element of \({{\mathbb F}_q}\) for which the Kloosterman sum on \({{\mathbb F}_q}\) attains the value 0. Kloosterman zeros can be used to construct monomial hyperbent (bent) functions in even (odd) characteristic, respectively. We give an elementary proof of the fact that for characteristic 2 and 3, no Kloosterman zero in \({{\mathbb F}_q}\) belongs to a proper subfield of \({{\mathbb F}_q}\) with one exception that occurs at q = 16. It was recently proved that no Kloosterman zero exists in a field of characteristic greater than 3. We also characterize those binary Kloosterman sums that are divisible by 16 as well as those ternary Kloosterman sums that are divisible by 9. Hence we provide necessary conditions that Kloosterman zeros must satisfy.

Research partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).