1.

M. Alabbadi and S. B. Wicker, A digital signature scheme based on linear error-correcting block codes. In Josef Pieprzyk and Reihanah Safavi-Naini (eds.), *Asiacrypt ’94*, Springer-Verlag (1994) LNCS no. 917, pp. 238–248.

2.

Bennett, C. H., Bessette, F., Brassard, G., Savail, G., Smolin, J. 1992Experimental quantum cryptographyJ. Cryptol.5328CrossRefGoogle Scholar 3.

C. H. Bennett, G. Brassard, C. Crépeau and M.-H. Skubiszewska, Practical quantum oblivious transfer protocols. In J. Feigenbaum (ed.), *Crypto ’91*, Springer-Verlag (1991). LNCS no. 576, pp. 351–366.

4.

Berlekamp, E. R. 1968Algebraic Coding TheoryMcGraw HillNew YorkGoogle Scholar 5.

D. Bleichenbacher and P. Nyuyen, Noisy polynomial interpolation and noisy chinese remaindering. In B. Preneel (ed.), *Eurocrypt ’00*, (2000) LNCS no. 1807, pp. 53–69.

6.

V. Boyko, P. MacKenzie, and S. Patel, Provably secure password-authenticated key exchange using Diffie-Hellman. In B. Preneel (ed.), *Eurocrypt ’00*, Springer-Verlag (2000) LNCS no. 1807, pp. 156–171.

7.

C. Crépeau, Efficient cryptographic protocols based on noisy channels. In W. Fumy (ed.), *Eurocrypt ’97*, Springer-Verlag, (1997) LNCS no. 1233, pp. 306–317.

8.

C. Crépeau and J. Kilian, Achieving oblivious transfer using weakened security assumptions. In *Proceedings of the 29th IEEE Symposium on the Foundations of Computer Science* (1988), pp. 42–52.

9.

G. I. Davida, Y. Frankel and B. J. Matt, On enabling secure applications through off-line biometric identification. In *IEEE Symposium on Privacy and Security* (1998).

10.

G. I. Davida, Y. Frankel and B. J. Matt, On the relation of error correction and cryptography to an offline biometric based identification scheme. In *Proceedings of WCC99, Workshop on Coding and Cryptography* (1999).

11.

I. Dumer, D. Micciancio and M. Sudan. Hardness of approximating the minimum distance of a linear code. In *Proceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS)*, (1999), pp. 475–484.

12.

Ellison, C., Hall, C., Milbert, R., Schneier, B. 2000, FebruaryProtecting Secret Keys with Personal EntropyJ. Fut. Comput. Sys.16311318Google Scholar 13.

Electronic Frontier Foundation, Cracking DES: Secrets of encryption research, wiretap politics & chip design. O’Reilly (1998).

14.

N. Frykholm and A. Juels, An error-tolerant password recovery scheme. In P. Samarati (ed.), *Eighth ACM Conference on Computer and Communications Security*, ACM Press (2001) pp. 1–8.

15.

V. Guruswami and M. Sudan, Improved decoding of Reed–Solomon and algebraic-geometric codes, In *FOCS ’98*, IEEE Computer Society (1998), pp. 28–39.

16.

T. Jakobsen, Cryptanalysis of block ciphers with probabilistic non-linear relations of low degree, In H. Krawczyk (ed.), *Crypto ’98*, Springer-Verlag (1998) LNCS no. 1462, pp. 212–222.

17.

M. Jakobsson and M. Yung, Proving with knowing: On oblivious, agnostic, and blindfolded provers, In N. Koblitz (ed.), *Crypto ’96*, Springer-Verlag (1996), LNCS no. 1109, pp. 186–200.

18.

I. Jermyn, A. Mayer, F. Monrose, M. K. Reiter and A. D. Rubin, The design and analysis of graphical passwords, In *Proceedings of the 8th USENIX Security Symposium* (1999), pp. 1–14.

19.

A. Juels and M. Wattenberg, A fuzzy commitment scheme, In G. Tsudik, (ed), *Sixth ACM Conference on Computer and Communications Security*, ACM Press (1999), pp. 28–36.

20.

A. Juels and M. Sudan, A fuzzy vault scheme, In *International Symposium on Information Theory (ISIT), IEEE Pressm, (2002), p. 408*.

21.

Massey, J. L. 1969Shift register synthesis and BCH decodingIEEE Trans. Inform. Theory15122127CrossRefMATHMathSciNetGoogle Scholar 22.

R. J. McEliece, A public-key cryptosystem based on algebraic coding theory, Technical Report DSN progress report 42–44, Jet Propulsion Laboratory, Pasadena (1978).

23.

F. Monrose, M. K. Reiter and S. Wetzel, Password hardening based on keystroke dynamics, In G. Tsudik (ed.), *Sixth ACM Conference on Computer and Communications Security*, ACM Press (1999), pp. 73–82.

24.

T. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing. In J. Feigenbaum (ed.), *Crypto ’91*, Springer-Verlag (1991), LNCS no. 576, pp. 129–140.

25.

W. W. Peterson, Encoding and error-correction procedures for Bose-Chaudhuri codes, *IEEE Trans. Inform. Theory*, Vol. IT-60 (1960) pp. 459–470.

26.

Schoenmakers, B., Boudot, F., Traoré, J. 2001, JulyA fair and efficient solution to the sociaset millionaires’ problemDiscrete Appl. Math.1112336MathSciNetGoogle Scholar 27.

Shamir, A. 1979How to share a secretCommun. ACM22612613CrossRefMATHMathSciNetGoogle Scholar 28.

C. Soutar, Biometric encryption for secure key generation, January 1998, *Presentation at the 1998 RSA Data Security Conference*.

29.

C. Soutar and G. J. Tomko, Secure private key generation using a fingerprint, In *CardTech/SecurTech Conference Proceedings*, Vol. 1, (May 1996) pp. 245–252.

30.

J. Stern, A new identification scheme based on syndrome decoding, In D.R. Stinson (ed.), *Crypto ’93*, Springer-Verlag (1993), LNCS no. 773, pp. 13–21.