Skip to main content

Advertisement

Log in

The Anti-Inflammatory Effect and Intestinal Barrier Protection of HU210 Differentially Depend on TLR4 Signaling in Dextran Sulfate Sodium-Induced Murine Colitis

Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Ulcerative colitis (UC) is strongly associated with inflammation and intestinal barrier disorder. The nonselective cannabinoid receptor agonist HU210 has been shown to ameliorate inflamed colon in colitis, but its effects on intestinal barrier function and extraintestinal inflammation are unclear.

Aims

To investigate the effects and the underlying mechanism of HU210 action on the UC in relation to a role of TLR4 and MAP kinase signaling.

Methods

Wild-type (WT) and TLR4 knockout (Tlr4 /) mice were exposed to 4% dextran sulfate sodium (DSS) for 7 days. The effects of HU210 on inflammation and intestinal barrier were explored.

Results

Upon DSS challenge, mice suffered from bloody stool, colon shortening, intestinal mucosa edema, pro-inflammatory cytokine increase and intestinal barrier destruction with goblet cell depletion, increased intestinal microflora accompanied with elevated plasma lipopolysaccharide, reduced mRNA expression of the intestinal tight junction proteins, and abnormal ratio of CD4+/CD8+ T cells in the intestinal Peyer’s patches. Pro-inflammatory cytokines in the plasma and the lung, as well as pulmonary myeloperoxidase activity, indicators of extraintestinal inflammation were increased. Protein expression of p38α and pp38 was up-regulated in the colon of WT mice. Tlr4 / mice showed milder colitis. HU210 reversed the intestinal barrier changes in both strains of mice, but alleviated inflammation only in WT mice.

Conclusions

Our study indicates that in experimental colitis, HU210 displays a protective effect on the intestinal barrier function independently of the TLR4 signaling pathway; however, in the extraintestinal tissues, the anti-inflammatory action seems through affecting TLR4-mediated p38 mitogen-activated protein kinase pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Haskell H, Andrews CW Jr, Reddy SI, et al. Pathologic features and clinical significance of “backwash” ileitis in ulcerative colitis. Am J Surg Pathol. 2005;29:1472–1481.

    Article  PubMed  Google Scholar 

  2. Geier MS, Smith CL, Butler RN, Howarth GS. Small-intestinal manifestations of dextran sulfate sodium consumption in rats and assessment of the effects of Lactobacillus fermentum BR11. Dig Dis Sci. 2009;54:1222–1228.

    Article  CAS  PubMed  Google Scholar 

  3. Yazbeck R, Howarth GS, Butler RN, Geier MS, Abbott CA. Biochemical and histological changes in the small intestine of mice with dextran sulfate sodium colitis. J Cell Physiol. 2011;226:3219–3224.

    Article  CAS  PubMed  Google Scholar 

  4. Vavricka SR, Schoepfer A, Scharl M, Lakatos PL, Navarini A, Rogler G. Extraintestinal manifestations of inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:1982–1992.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liu Y, Wang XY, Yang X, Jing S, Zhu L, Gao SH. Lung and intestine: a specific link in an ulcerative colitis rat model. Gastroenterol Res Pract. 2013;2013:124530.

    PubMed  PubMed Central  Google Scholar 

  6. Danese S, Fiocchi C. Ulcerative colitis. N Engl J Med. 2011;365:1713–1725.

    Article  CAS  PubMed  Google Scholar 

  7. Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46–54.

    Article  PubMed  Google Scholar 

  8. Engel MA, Neurath MF. New pathophysiological insights and modern treatment of IBD. J Gastroenterol. 2010;45:571–583.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao J, Shi P, Sun Y, et al. DHA protects against experimental colitis in IL-10-deficient mice associated with the modulation of intestinal epithelial barrier function. Br J Nutr. 2015;114:181–188.

    Article  CAS  PubMed  Google Scholar 

  10. MacDonald TT, Biancheri P, Sarra M, Monteleone G. What’s the next best cytokine target in IBD? Inflamm Bowel Dis. 2012;18:2180–2189.

    Article  PubMed  Google Scholar 

  11. Salim SY, Söderholm JD. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17:362–381.

    Article  PubMed  Google Scholar 

  12. Andersen K, Kesper MS, Marschner JA, et al. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation. J Am Soc Nephrol. 2016. doi:10.1681/ASN.2015111285.

    PubMed  Google Scholar 

  13. Sánchez de Medina F, Romero-Calvo I, Mascaraque C, Martinez-Augustin O. Intestinal inflammation and mucosal barrier function. Inflamm Bowel Dis. 2014;20:2394–2404.

    Article  PubMed  Google Scholar 

  14. Alhouayek M, Muccioli GG. The endocannabinoid system in inflammatory bowel diseases: from pathophysiology to therapeutic opportunity. Trends Mol Med. 2012;18:615–625.

    Article  CAS  PubMed  Google Scholar 

  15. Cao MH, Li YY, Xu J, et al. Cannabinoid HU210 protects isolated rat stomach against impairment caused by serum of rats with experimental acute pancreatitis. PLoS ONE. 2012;7:e52921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Massa F, Marsicano G, Hermann H, et al. The endogenous cannabinoid system protects against colonic inflammation. J Clin Invest. 2004;113:1202–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ke P, Shao BZ, Xu ZQ, et al. Activation of cannabinoid receptor 2 ameliorates DSS-induced colitis through inhibiting NLRP3 inflammasome in macrophages. PLoS ONE. 2016;11:e0155076.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Storr M, Emmerdinger D, Diegelmann J, et al. The cannabinoid receptor 1 (CNR1)1359 G/A polymorphism modulates susceptibility to ulcerative colitis and the phenotype in Crohn’s disease. PLoS ONE. 2010;5:e9453.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Engel MA, Kellermann CA, Burnat G, Hahn EG, Rau T, Konturek PC. Mice lacking cannabinoid CB1-, CB2-receptors or both receptors show increased susceptibility to trinitrobenzene sulfonic acid (TNBS)-induced colitis. J Physiol Pharmacol. 2010;61:89–97.

    CAS  PubMed  Google Scholar 

  20. Ottani A, Giuliani D. Hu 210: a potent tool for investigations of the cannabinoid system. CNS Drug Rev. 2001;7:131–145.

    Article  CAS  PubMed  Google Scholar 

  21. Lax P, Esquiva G, Altavilla C, Cuenca N. Neuroprotective effects of the cannabinoid agonist HU210 on retinal degeneration. Exp Eye Res. 2014;120:175–185.

    Article  CAS  PubMed  Google Scholar 

  22. Maslov LN, Krylatov AV, Lishmanov YB. Role of cyclic nucleotides and NO synthase in mechanisms of cardioprotective effects of cannabinoid HU-210. Bull Exp Biol Med. 2014;157:588–591.

    Article  CAS  PubMed  Google Scholar 

  23. Lucas K, Maes M. Role of the toll like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway. Mol Neurobiol. 2013;48:190–204.

    Article  CAS  PubMed  Google Scholar 

  24. Wang W, Xia T, Yu X. Wogonin suppresses inflammatory response and maintains intestinal barrier function via TLR4–MyD88–TAK1-mediated NF-κB pathway in vitro. Inflamm Res. 2015;64:423–431.

    Article  CAS  PubMed  Google Scholar 

  25. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229–241.

    Article  CAS  PubMed  Google Scholar 

  26. Tan Y, Zou KF, Qian W, Chen S, Hou XH. Expression and implication of toll-like receptors TLR2, TLR4 and TLR9 in colonic mucosa of patients with ulcerative colitis. J Huazhong Univ Sci Technol Med Sci. 2014;34:785–790.

    Article  CAS  PubMed  Google Scholar 

  27. Feng J, Guo C, Zhu Y, et al. Baicalin down regulates the expression of TLR4 and NFkB-p65 in colon tissue in mice with colitis induced by dextran sulfate sodium. Int J Clin Exp Med. 2014;7:4063–4072.

    PubMed  PubMed Central  Google Scholar 

  28. Li YY, Yuece B, Cao HM, et al. Inhibition of p38/Mk2 signaling pathway improves the anti-inflammatory effect of WIN55 on mouse experimental colitis. Lab Invest. 2013;93:322–333.

    Article  CAS  PubMed  Google Scholar 

  29. Duncan M, Galic MA, Wang A, et al. Cannabinoid 1 receptors are critical for the innate immune response to TLR4 stimulation. Am J Physiol Regul Integr Comp Physiol. 2013;305:R224–R231.

    Article  CAS  PubMed  Google Scholar 

  30. Yan Y, Kolachala V, Dalmasso G, et al. Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis. PLoS ONE. 2009;4:e6073.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Melgar S, Karlsson L, Rehnstrom E, et al. Validation of murine dextran sulfate sodium-induced colitis using four therapeutic agents for human inflammatory bowel disease. Int Immunopharmacol. 2008;8:836–844.

    Article  CAS  PubMed  Google Scholar 

  32. Engel MA, Kellermann CA, Rau T, Burnat G, Hahn EG, Konturek PC. Ulcerative colitis in AKR mice is attenuated by intraperitoneally administered anandamide. J Physiol Pharmacol. 2008;59:673–689.

    CAS  PubMed  Google Scholar 

  33. Takagi T, Naito Y, Uchiyama K, et al. Carbon monoxide liberated from carbon monoxide-releasing molecule exerts an anti-inflammatory effect on dextran sulfate sodium-induced colitis in mice. Dig Dis Sci. 2011;56:1663–1671.

    Article  CAS  PubMed  Google Scholar 

  34. Randall L, Heinrich K, Horton R, et al. Detection of antibiotic residues and association of cefquinome residues with the occurrence of extended-spectrum β-lactamase (ESBL)-producing bacteria in waste milk samples from dairy farms in England and Wales in 2011. Res Vet Sci. 2014;96:15–24.

    Article  CAS  PubMed  Google Scholar 

  35. Cottell JL, Kanwar N, Castillo-Courtade L, et al. blaCTX-M-32 on an IncN plasmid in Escherichia coli from beef cattle in the United States. Antimicrob Agents Chemother. 2013;57:1096–1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang S, Zhu H, Lu C, et al. Fermented milk supplemented with probiotics and prebiotics can effectively alter the intestinal microbiota and immunity of host animals. J Dairy Sci. 2012;95:4813–4822.

    Article  CAS  PubMed  Google Scholar 

  37. Luo H, Guo P, Zhou Q. Role of TLR4/NF-κB in damage to intestinal mucosa barrier function and bacterial translocation in rats exposed to hypoxia. PLoS ONE. 2012;7:e46291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu YH, Li XQ, Zhang W, Zhou D, Liu HY, Wang JF. Dose-dependent effects of Lactobacillus rhamnosus on serum interleukin-17 production and intestinal T-cell responses in pigs challenged with Escherichia coli. Appl Environ Microbiol. 2014;80:1787–1798.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hu L, Yang GZ, Zhang Y, et al. Overexpression of SULT2B1b is an independent prognostic indicator and promotes cell growth and invasion in colorectal carcinoma. Lab Invest. 2015;95:1005–1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mandalasi M, Dorabawila N, Smith DF, Heimburg-Molinaro J, Cummings RD, Nyame AK. Development and characterization of a specific IgG monoclonal antibody toward the Lewis × antigen using splenocytes of Schistosoma mansoni-infected mice. Glycobiology. 2013;23:877–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gölz G, Karadas G, Alutis ME, et al. Arcobacter butzleri induce colonic, extra-intestinal and systemic inflammatory responses in gnotobiotic IL-10 deficient mice in a strain-dependent manner. PLoS ONE. 2015;10:e0139402.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Leppkes M, Roulis M, Neurath MF, Kollias G, Becker C. Pleiotropic functions of TNF-α in the regulation of the intestinal epithelial response to inflammation. Int Immunol. 2014;26:509–515.

    Article  CAS  PubMed  Google Scholar 

  43. Ardesjo B, Portela-Gomes GM, Rorsman F, et al. Immunoreactivity against goblet cells in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2008;14:652–661.

    Article  PubMed  Google Scholar 

  44. Hao XP, Lucero CM, Turkbey B, et al. Experimental colitis in SIV-uninfected rhesus macaques recapitulates important features of pathogenic SIV infection. Nat Commun. 2015;6:8020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang J, Zhao Y, Shao F. Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Curr Opin Immunol. 2015;32:78–83.

    Article  CAS  PubMed  Google Scholar 

  46. Kamada N, Seo SU, Chen GY, Nunez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13:321–335.

    Article  CAS  PubMed  Google Scholar 

  47. Jung C, Hugot JP, Barreau F. Peyer’s patches: the immune sensors of the intestine. Int J Inflam. 2010;2010:823710.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gao F, Li M, Liu Y, Gao C, Wen S, Tang L. Intestinal dysbacteriosis induces changes of T lymphocyte subpopulations in Peyer’s patches of mice and orients the immune response towards humoral immunity. Gut Pathog. 2012;4:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zenewicz LA, Antov A, Flavell RA. CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol Med. 2009;15:199–207.

    Article  CAS  PubMed  Google Scholar 

  50. Yao Y, Han W, Liang J, et al. Glatiramer acetate ameliorates inflammatory bowel disease in mice through the induction of Qa-1-restricted CD8+ regulatory cells. Eur J Immunol. 2013;43:125–136.

    Article  PubMed  Google Scholar 

  51. Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol. 2014;36:157–165.

    Article  PubMed  Google Scholar 

  52. Wang Z, Li R, Tan J, et al. Syndecan-1 acts in synergy with tight junction through Stat3 signaling to maintain intestinal mucosal barrier and prevent bacterial translocation. Inflamm Bowel Dis. 2015;21:1894–1907.

    Article  PubMed  Google Scholar 

  53. Hwang I, An BS, Yang H, Kang HS, Jung EM, Jeung EB. Tissue-specific expression of occludin, zona occludens-1, and junction adhesion molecule A in the duodenum, ileum, colon, kidney, liver, lung, brain, and skeletal muscle of C57BL mice. J Physiol Pharmacol. 2013;64:11–18.

    CAS  PubMed  Google Scholar 

  54. Gong Y, Li H, Li Y. Effects of Bacillus subtilis on epithelial tight junctions of mice with inflammatory bowel disease. J Interferon Cytokine Res. 2016;36:75–85.

    Article  CAS  PubMed  Google Scholar 

  55. Poritz LS, Harris LR III, Kelly AA, Koltun WA. Increase in the tight junction protein claudin-1 in intestinal inflammation. Dig Dis Sci. 2011;56:2802–2809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bowie RV, Donatello S, Lyes C, et al. Lipid rafts are disrupted in mildly inflamed intestinal microenvironments without overt disruption of the epithelial barrier. Am J Physiol Gastrointest Liver Physiol. 2012;302:G781–G793.

    Article  CAS  PubMed  Google Scholar 

  57. Muccioli GG, Naslain D, Bäckhed F, et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol. 2010;6:392.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Feng JS, Yang Z, Zhu YZ, Liu Z, Guo CC, Zheng XB. Serum IL-17 and IL-6 increased accompany with TGF-β and IL-13 respectively in ulcerative colitis patients. Int J Clin Exp Med. 2014;7:5498–5504.

    PubMed  PubMed Central  Google Scholar 

  59. Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16:448–457.

    Article  CAS  PubMed  Google Scholar 

  60. Kanai T, Mikami Y, Sujino T, Hisamatsu T, Hibi T. RORγt-dependent IL-17A-producing cells in the pathogenesis of intestinal inflammation. Mucosal Immunol. 2012;5:240–247.

    Article  CAS  PubMed  Google Scholar 

  61. Sugihara T, Kobori A, Imaeda H, et al. The increased mucosal mRNA expressions of complement C3 and interleukin-17 in inflammatory bowel disease. Clin Exp Immunol. 2010;160:386–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. D’Andrea N, Vigliarolo R, Sanguinetti CM. Respiratory involvement in inflammatory bowel diseases. Multidiscip Respir Med. 2010;5:173–182.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gironella M, Mollà M, Salas A, et al. The role of P-selectin in experimental colitis as determined by antibody immunoblockade and genetically deficient mice. J Leukoc Biol. 2002;72:56–64.

    CAS  PubMed  Google Scholar 

  64. Docena G, Rovedatti L, Kruidenier L, et al. Down-regulation of p38 mitogen-activated protein kinase activation and pro-inflammatory cytokine production by mitogen-activated protein kinase inhibitors in inflammatory bowel disease. Clin Exp Immunol. 2010;162:108–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Feng YJ, Li YY. The role of p38 mitogen-activated protein kinase in the pathogenesis of inflammatory bowel disease. J Dig Dis. 2011;12:327–332.

    Article  CAS  PubMed  Google Scholar 

  66. Michler T, Storr M, Kramer J, et al. Activation of cannabinoid receptor 2 reduces inflammation in acute experimental pancreatitis via intra-acinar activation of p38 and MK2-dependent mechanisms. Am J Physiol Gastrointest Liver Physiol. 2013;304:G181–G192.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Peilin Zhao for providing the technical help in pathology. This work was supported by Grants from the National Science Foundation of China (Nos. 31571181 and 81270477 to Dr. Yongyu Li).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Li, Y., Shen, L. et al. The Anti-Inflammatory Effect and Intestinal Barrier Protection of HU210 Differentially Depend on TLR4 Signaling in Dextran Sulfate Sodium-Induced Murine Colitis. Dig Dis Sci 62, 372–386 (2017). https://doi.org/10.1007/s10620-016-4404-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4404-y

Keywords

Navigation