, Volume 58, Issue 12, pp 3386-3388

Energy, Oxidative Stress, and Inflammation in the Colon

This is an excerpt from the content

The manuscript by Martinez et al. [1] describes the effects of topically applied N-acetylcysteine (NAC) on colonic histology and oxidative DNA damage in a rodent model of diversion colitis. The antioxidant NAC significantly improved histological inflammation scores in the diverted colon segments after 2 and 4 weeks of treatment. Furthermore, oxidative DNA damage in colonocytes was significantly reduced in segments without and with fecal stream exposure. These observations broaden our understanding of the role of oxidative stress in diversion colitis, and provide an opportunity to examine other interrelated factors involved in inflammation of the colon.

Energy metabolism in colonocytes is dependent on the luminal availability of short-chain fatty acids (SCFA), for example butyrate, propionate, and acetate [2]. Obligate anaerobic bacteria within the gut microbiome ferment and break down dietary complex carbohydrates and proteins to produce SCFA. Whereas glucose is a principal energy sourc