, Volume 57, Issue 10, pp 2580-2591
Date: 16 May 2012

Soluble Epoxide Hydrolase Gene Deficiency or Inhibition Attenuates Chronic Active Inflammatory Bowel Disease in IL-10(−/−) Mice

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Background

Soluble epoxide hydrolase (sEH) metabolizes anti-inflammatory epoxyeicosatrienoic acids (EETs) into their much less active dihydroxy derivatives dihydroxyeicosatrienoic acids. Thus, targeting sEH would be important for inflammation.

Aims

To determine whether knockout or inhibition of sEH would attenuate the development of inflammatory bowel disease (IBD) in a mouse model of IBD in IL-10(−/−) mice.

Methods

Either the small molecule sEH inhibitor trans/-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB) or sEH knockout mice were used in combination with IL-10(−/−) mice. t-AUCB was administered to mice in drinking fluid. Extensive histopathologic, immunochemical, and biochemical analyses were performed to evaluate effect of sEH inhibition or deficiency on chronic active inflammation and related mechanism in the bowel.

Results

Compared to IL-10 (−/−) mice, sEH inhibition or sEH deficiency in IL-10(−/−) mice resulted in significantly lower incidence of active ulcer formation and transmural inflammation, along with a significant decrease in myeloperoxidase-labeled neutrophil infiltration in the inflamed bowel. The levels of IFN-γ, TNF-α, and MCP-1, as well VCAM-1 and NF-kB/IKK-α signals were significantly decreased as compared to control animals. Moreover, an eicosanoid profile analysis revealed a significant increase in the ratio of EETs/DHET and EpOME/DiOME, and a slightly down-regulation of inflammatory mediators LTB4 and 5-HETE.

Conclusion

These results indicate that sEH gene deficiency or inhibition reduces inflammatory activities in the IL-10 (−/−) mouse model of IBD, and that sEH inhibitor could be a highly potential in the treatment of IBD.

Wanying Zhang and Allison L. Yang contributed equally to this work.