, Volume 55, Issue 11, pp 3063-3069,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 08 Sep 2010

Lafutidine, a Protective H2 Receptor Antagonist, Enhances Mucosal Defense in Rat Esophagus



Luminal acid or CO2 induces a hyperemic response in the esophagus, via activation of acid sensors on capsaicin-sensitive afferent nerves (CSAN). Since disruption of the hyperemic response to luminal CO2 acidifies the interstitium of the esophageal mucosa, the hyperemic response may maintain interstitial pH (pHint). We hypothesized that acid-related hyperemia maintains pHint, preventing acid-induced injury in the esophageal mucosa.


We examined the effects of capsaicin (Cap) or lafutidine (Laf), a mucosal protective H2 antagonist, on the regulation of pHint and blood flow in rat esophagus using ratiometric microimaging and laser-Doppler measurements of the lower esophageal mucosa of living rats. The esophagus was topically superfused with pH 7.0 buffer, or a pH 1.0 or pH 1.0 + pepsin (1 mg/ml) solution with or without Laf.


Cap (30 or 100 µM) or Laf (0.1 or 1 mM) dose-dependently increased blood flow, accompanied by increased pHint. The pH 1.0 solution increased blood flow without pHint change, whereas Laf (1 mM) increased blood flow and pHint during acid exposure. The effects of Laf were abolished by ablation of CSAN. Perfusion of the acidified pepsin solution gradually decreased pHint, inhibited by Laf perfusion.


Activation of CSAN by Laf with or without acid, accompanied by hyperemia, increased pHint, preventing acidified pepsin-induced interstitial acidification. Stimulation of the capsaicin pathway with compounds such as Laf enhances mucosal protection from acid-related injury in the upper gastrointestinal tract.