Skip to main content
Log in

Protective Effect of Comaruman, a Pectin of Cinquefoil Comarum palustre L., on Acetic Acid-Induced Colitis in Mice

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The efficacy of comaruman CP, a pectin of marsh cinquefoil Comarum palustre L., was investigated using a model of acetic acid-induced colitis in mice. Mice were administered comaruman CP orally 2 days prior to rectal injection of 5% acetic acid and examined for colonic damage 24 hr later. Colonic inflammation was characterized by macroscopical injury, higher levels of myeloperoxidase activity, enhanced vascular permeability, and diminution of colonic mucus. Oral administration of comaruman CP was found to prevent progression of colitis. Colonic macroscopic scores and the total square of damage were significantly reduced in mice treated with CP compared with the vehicle-treated colitis group. Peroral pretreatment of mice with comaruman CP was shown to decrease tissue myeloperoxidase activity in colons compared with the colitis group. Comaruman CP was found to stimulate production of mucus by colons of normal and colitis mice. Comaruman CP decreased the inflammatory status of normal mice as elicited by reduction of vascular permeability and adhesion of peritoneal neutrophils and macrophages. Thus, a preventive effect of comaruman on acetic acid-induced colitis in mice was detected. Reduction of neutrophil infiltration and enhancement of colon-bound mucus may be implicated in the protective effect of comaruman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347:417–429

    Article  PubMed  CAS  Google Scholar 

  2. Hendrickson BA, Gokhale R, Cho JH (2002) Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev 15:79–94

    Article  PubMed  Google Scholar 

  3. Lipkin M, Reddy B, Newmark H, Lamprecht SA (1999) Dietary factors in human colorectal cancer. Annu Rev Nutr 19:545–586

    Article  PubMed  CAS  Google Scholar 

  4. Thakur BR, Singh RK, Handa AK (1997) Chemistry and uses of pectin—A review. Crit Rev Food Sci Nutr 37:47–73

    Article  PubMed  CAS  Google Scholar 

  5. Rolandelli RH, Saul SH, Settle RG, Jacobs DO, Trerotola SO, Rombeau Jl (1988) Comparison of parenteral nutrition and enteral feeding with pectin in experimental colitis in the rat. Am J Clin Nutr 47:715–721

    PubMed  CAS  Google Scholar 

  6. Lim BO, Lee SH, Park DK, Choue RW (2003) Effect of dietary pectin on the production of immunoglobulins and cytokines by mesenteric lymph node lymphocytes in mouse colitis induced with dextran sulfate sodium. Biosci Biotechnol Biochem 67:1706–1712

    Article  PubMed  CAS  Google Scholar 

  7. Barcelo A, Claustre J, Moro F, Chayvialle JA, Cuber JC, Plaisancie P (2000) Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 46:218–224

    Article  PubMed  CAS  Google Scholar 

  8. Schimidgall J, Hensel A (2002) Bioadhesive properties of polygalacturonides against colonic epithelial membranes. Int J Biol Macromol 30:217–225

    Article  Google Scholar 

  9. Ovodov YuS (1998) Polysaccharides of phanerogams:structure and physiological activity. Russ J Bioorgan Chem 24:423–439

    Google Scholar 

  10. Popov SV, Popova GYu, Ovodova RG, Ovodov YuS (2005) Anti-inflammatory activity of the pectic polysaccharide from Comarum palustre L. Fitoterapia 76:281–287

    Article  PubMed  CAS  Google Scholar 

  11. Popov SV, Ovodova RG, Popova GYu, Nikitiina IR, Ovodov YuS (2005) Adhesion of human neutrophils to fibronectin is inhibited by comaruman, pectin of marsh cinquefoil Comarum palustre L., and by its fragments. Biochemistry (Mosc) 70:108–112

    CAS  Google Scholar 

  12. Iton H, Kataoka H, Tomita M, Hamasuna R, Nawa Y, Kitamura N, Koono M (2000) Upregulation of HGF activator inhibitor type 1 but not type 2 along with regeneration of intestinal mucosa. Am J Physiol Gastrointest Liver Physiol 278:635–643

    Google Scholar 

  13. Ovodova RG, Bushneva OA, Shashkov AS, Chizhov AO, Ovodov YuS (2005) Structural study of pectin of marsh cinquefoil Comarum palustre L. Biochemistry (Mosc) 70:1051–1062

    Google Scholar 

  14. Mahgoub AA, El-Medany AA, Hager HH, Mustafa AA, El-Sabah DM (2003) Evaluating the prophylactic potential of zafirlukast against the toxic effects of acetic acid on the rat colon. Toxicol Lett 145:79–87

    Article  PubMed  CAS  Google Scholar 

  15. Evans M, Laszlo F, Brendan J, Whittle R (2000) Site-specific lesion formation, inflammation and inducible nitric oxide synthase expression by indomethacin in the rat intestine. Eur J Pharm 388:281–285

    Article  CAS  Google Scholar 

  16. Blandizzi C, Natale G, Gherardi G, Lazzeri G, Marveggio C, Colucci R, Carignani D, Del Tacca M (1999) Acid-independent gastroprotective effects of lansoprazole in experimental mucosal injury. Dig Dis Sci 44:2039–2050

    Article  PubMed  CAS  Google Scholar 

  17. Pereira BMR, da Silva BP, Pereira NA, Parente JP (2000) Anti-inflammatory and immunologically active polysaccharides of Periandra mediterranea. Phytochemistry 54:409–413

    Article  PubMed  CAS  Google Scholar 

  18. Fraser I, Huges D, Gordon S (1993) Divalent cation-independent macrophage adhesion inhibited by monoclonal antibody to murine scavenger receptor. Nature 364:343–346

    Article  PubMed  CAS  Google Scholar 

  19. Englyst NH, Quigley ME, Hudson GJ (1995) Definition and measurement of dietary fibre. Eur J Clin Nutr 49:48–62

    Google Scholar 

  20. Umar S, Morris AP, Kourouma F, Sellin JH (2003) Dietary pectin and calcium inhibit colonic proliferation in vivo by differing mechanisms. Cell Prolif 36:361–375

    Article  PubMed  CAS  Google Scholar 

  21. Cook SI, Sellin JN (1998) Review article: short chain fatty acids in health and disease. Aliment Pharmacol Ther 12:499–507

    Article  PubMed  CAS  Google Scholar 

  22. Cameron IL, Hardman WE, Heitman DW, Carter JW (2000) Dietary fibre on cell proliferation in large bowel mucosal crypts near or away from lymphoid nodules and on mineral bioavailability. Cell Prolif 33:367–379

    Article  PubMed  CAS  Google Scholar 

  23. Stark A, Nyska A, Madar Z (1996) Metabolic and morphometric changes in small and large intestine in rats fed high-fiber diets. Toxicol Pathol 24:166–170

    Article  PubMed  CAS  Google Scholar 

  24. Deng GY, Liu YW, He GZ, Jiang ZM (1999) Effect of dietary fiber on intestinal barrier function of 5-Fu stressed rats. Res Exp Med 199:111–119

    Article  CAS  Google Scholar 

  25. Pooley N, Ghosh L, Sharon P (1995) Up-regulation of E-selectin and intercellular adhesion molecule-1 differs between Crohn's disease and ulcerative colitis. Dig Dis Sci 40:219–225

    Article  PubMed  CAS  Google Scholar 

  26. Boismenu R, Chen Y (2000) Insights from mouse models of colitis. J Leukoc Biol 67:267–278

    PubMed  CAS  Google Scholar 

  27. Nusrat A, Parkos CA, Liang TW, Carnes DK, Madara JL (1997) Neutrophil migration across model intestinal epithelia:monolayer disruption and subsequent events in epithelial repair. Gastroenterology 113:1489–1500

    Article  PubMed  CAS  Google Scholar 

  28. Krawisz JE, Sharon P, Stenson WF (1984) Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Gastroenterology 87:1344–1350

    PubMed  CAS  Google Scholar 

  29. Eftimiadi C, Buzzi E, Tonetti M, Buffa P, Buffa D, van Steenberg MT, de Graaf J, Botta GA (1987) Short-chain fatty acid produced by anaerobic bacteria alter the physiological responses of human neutrophils to chemotactic peptide. J Infect 14:43–53

    Article  PubMed  CAS  Google Scholar 

  30. Inase N, Schreck RE, Lazarus SC (1993) Heparin inhibits histamine release from canine mast cells. Am J Physiol 264:L387–L390

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the programs “Molecular and Cellular Biology” and “Fundamental Sciences—to Medicine” of the Presidium of the RAS and by the Russian Fund for Basic Research (Grant 03-04-48136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Popov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, S.V., Ovodova, R.G., Markov, P.A. et al. Protective Effect of Comaruman, a Pectin of Cinquefoil Comarum palustre L., on Acetic Acid-Induced Colitis in Mice. Dig Dis Sci 51, 1532–1537 (2006). https://doi.org/10.1007/s10620-005-9034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-005-9034-8

Keywords

Navigation