Skip to main content
Log in

A preference-based approach for interactive weight learning: learning weights within a logic-based query language

Distributed and Parallel Databases Aims and scope Submit manuscript

Abstract

The result quality of queries incorporating impreciseness can be improved by the specification of user-defined weights. Existing approaches evaluate weighted queries by applying arithmetic evaluations on top of the query’s intrinsic logic. This complicates the usage of logic-based optimization. Therefore, we suggest a weighting approach that is completely embedded in a logic.

In order to facilitate the user interaction with the system, we exploit the intuitively comprehensible concept of preferences. In addition, we use a machine-based learning algorithm to learn weighting values in correspondence to the user’s intended semantics of a posed query. Experiments show the utility of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated ranking of database query results. In: CIDR (2003)

  2. Birkhoff, G., Neumann, J.v.: The logic of quantum mechanics. Ann. of Math. 37, 823–843 (1936)

    Article  MathSciNet  Google Scholar 

  3. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering, pp. 421–430. IEEE Computer Society, Washington (2001)

    Chapter  Google Scholar 

  4. Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Trans. Fuzzy Syst. 3(1), 1–17 (1995)

    Article  MathSciNet  Google Scholar 

  5. Breslow, L.A., Aha, D.W.: Simplifying decision trees: a survey. Knowl. Eng. Rev. 12(1), 1–40 (1997). doi:10.1017/S0269888997000015

    Article  Google Scholar 

  6. Bruce, V., Green, P.R.: Visual Perception—Physiology, Psychology and Ecology (2nd edn., reprinted). Lawrence Erlbaum Associates, Publishers, Hove (1993)

    Google Scholar 

  7. Chaudhuri, S., Ramakrishnan, R., Weikum, G.: Integrating DB and IR technologies: What is the sound of one hand clapping? In: CIDR, pp. 1–12 (2005)

  8. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst. 28(4), 427–466 (2003)

    Article  Google Scholar 

  9. Chomicki, J.: Database querying under changing preferences. Ann. Math. Artif. Intell. 50(1–2), 79–109 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ciaccia, P., Montesi, D., Penzo, W., Trombetta, A.: Imprecision and user preferences in multimedia queries: A generic algebraic approach. In: Schewe, K.D., Thalheim, B. (eds.) FoIKS: Foundations of Information and Knowledge Systems, First International Symposium, FoIKS 2000, Burg, Germany, February 14–17, 2000, Lecture Notes in Comput. Sci., vol. 1762, pp. 50–71. Springer, Berlin (2000)

    Chapter  Google Scholar 

  11. Fagin, R., Wimmers, E.L.: A formula for incorporating weights into scoring rules. Theor. Comput. Sci. 239(2), 309–338 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kießling, W.: Foundations of preferences in database systems. In: Proc. of the 28th Int. Conf. on Very Large Data Bases, VLDB’02, Hong Kong, China, August 2002, pp. 311–322. Morgan Kaufmann, San Mateo (2002)

    Chapter  Google Scholar 

  13. Klose, A., Nürnberger, A.: On the properties of prototype-based fuzzy classifiers. IEEE Trans. Syst. Man Cybernet. B 37(4), 817–835 (2007)

    Article  Google Scholar 

  14. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: Proc. of the 28th Int. Conf. on Very Large Data Bases, VLDB’02, Hong Kong, China, August 2002, pp. 275–286. Morgan Kaufmann, San Mateo (2002)

    Chapter  Google Scholar 

  15. Lee, J.H.: Properties of extended boolean models in information retrieval. In: SIGIR (ed.) Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’94, pp. 182–190. Springer, New York (1994)

    Google Scholar 

  16. Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: State of the art and challenges. ACM Trans. Multimedia Comput. Commun. Appl. 2(1), 1–19 (2006). doi:10.1145/1126004.1126005

    Article  Google Scholar 

  17. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    MATH  Google Scholar 

  18. Rocchio, J.J.J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART Retrieval System—Experiments in Automatic Document Processing, pp. 313–323. Prentice Hall International, Englewood Cliffs (1971). Chap. 14

    Google Scholar 

  19. Rowe, L.A., Jain, R.: ACM SIGMM retreat report on future directions in multimedia research. ACM Trans. Multimedia Comput. Commun. Appl. 1(1), 3–13 (2005) doi:10.1145/1047936.1047938

    Article  Google Scholar 

  20. Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. Tech. Rep., Ithaca (1988)

  21. Salton, G., Fox, E.A., Wu, H.: Extended boolean information retrieval. Commun. ACM 26(11), 1022–1036 (1983). doi:10.1145/182.358466

    Article  MATH  MathSciNet  Google Scholar 

  22. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Ithaca (1974)

  23. Schmitt, I.: QQL: A DB&IR query language. VLDB J. 17(1), 39–56 (2008)

    Google Scholar 

  24. Schmitt, I., Schulz, N.: Similarity relational calculus and its reduction to a similarity algebra. In: Seipel, D., Turull-Torres, J.M. (eds.) Third Intern. Symposium on Foundations of Information and Knowledge Systems (FoIKS’04), Austria, February 17–20. Lecture Notes in Comput. Sci., vol. 2942, pp. 252–272. Springer, Berlin (2004)

    Google Scholar 

  25. Schmitt, I., Zellhöfer, D., Nürnberger, A.: Towards quantum logic based multimedia retrieval. In: Annual Meeting of the North American Fuzzy Information Processing Society, pp. 1–6 (2008)

  26. Schulz, N., Schmitt, I.: Relevanzwichtung in komplexen Ähnlichkeitsanfragen. In: Weikum, G., Schöning, H., Rahm, E. (eds.) Datenbanksysteme in Business, Technologie und Web, BTW’03, 10. GI-Fachtagung, Leipzig, Februar 2003. Lecture Notes in Informatics, vol. 26, pp. 187–196. Gesellschaft für Informatik, Bonn (2003)

    Google Scholar 

  27. Selfridge, O.G.: Pandemonium. A paradigm for learning. The Mechanics of Thought Processes (1959)

  28. Shneiderman, B., Plaisant, C.: Designing the User Interface: Strategies for Effective Human–Computer Interaction (4 edn.) Pearson, Boston (2005). URL http://www.gbv.de/dms/ilmenau/toc/492668051.pdf

    Google Scholar 

  29. Weikum, G.: DB&IR: both sides now. In: SIGMOD (ed.) Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, SIGMOD’07, pp. 25–30. ACM, New York (2007)

    Chapter  Google Scholar 

  30. Claremont Workshop: The Claremont database research self assessment. Tech. rep. (2008). URL http://db.cs.berkeley.edu/claremont/claremontreport08.pdf

  31. Zadeh, L.A.: Fuzzy logic. IEEE Comput. 21(4), 83–93 (1988)

    Google Scholar 

  32. Ziegler, M.: Quantum logic: order structures in quantum mechanics. Tech. rep., University Paderborn, Germany (2005). URL http://wwwcs.upb.de/cs/ag-madh/WWW/ziegler/qlogic.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Zellhöfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zellhöfer, D., Schmitt, I. A preference-based approach for interactive weight learning: learning weights within a logic-based query language. Distrib Parallel Databases 27, 31–51 (2010). https://doi.org/10.1007/s10619-009-7049-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10619-009-7049-4

Keywords

Navigation