Ahmed A, Xing EP (2008) Dynamic non-parametric mixture models and the recurrent chinese restaurant process: with applications to evolutionary clustering. Proceedings of the SIAM international conference on data mining, Atlanta

Anderson TW (2003) An introduction to multivariate statistical analysis, 3rd edn. Wiley, Hoboken

MATHBródka P, Saganowski S, Kazienko P (2012) GED: the method for group evolution discovery in social networks. Soc Netw Anal Min. doi:

10.1007/s13278-012-0058-8
Carmi A, Septier F, Godsill SJ (2009) The Gaussian mixture MCMC particle algorithm for dynamic cluster tracking. Proceedings of the 12th international conference on information fusion, Seattle

Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, Philadelphia

Charikar M, Chekuri C, Feder T, Motwani R (2004) Incremental clustering and dynamic information retrieval. SIAM J Comput 33(6):1417–1440

CrossRefMATHMathSciNetChen Y, Wiesel A, Eldar YC (2010) Shrinkage algorithms for MMSE covariance estimation. IEEE Trans Signal Process 58(10):5016–5029

CrossRefMathSciNetChi Y, Song X, Zhou D, Hino K, Tseng BL (2009) On evolutionary spectral clustering. ACM Trans Knowl Discov Data 3(4):17

CrossRefChung FRK (1997) Spectral graph theory. American Mathematical Society, Providence

Eagle N, Pentland A, Lazer D (2009) Inferring friendship network structure by using mobile phone data. Proc Nat Acad Sci 106(36):15274–15278

CrossRefFalkowski T, Bartelheimer J, Spiliopoulou M (2006) Mining and visualizing the evolution of subgroups in social networks. Proceedings of the IEEE/WIC/ACM international conference on web intelligence, Hong Kong

Fenn DJ, Porter MA, McDonald M, Williams S, Johnson NF, Jones NS (2009) Dynamic communities in multichannel data: an application to the foreign exchange market during the 2007–2008 credit crisis. Chaos 19(033):119

Gavrilov M, Anguelov D, Indyk P, Motwani R (2000) Mining the stock market: Which measure is best? Proceedings of 6th ACM SIGKDD international conference on knowledge discovery and data mining. ACM Press, New York, pp 487–496

Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks. Proceedings of international conference on advanced social network analysis and mining, pp 176–183

Gretton A, Borgwardt KM, Rasch M, Schölkopf B, Smola AJ (2007) A kernel approach to comparing distributions. Proceedings of the 22nd AAAI conference on artificial intelligence

Gupta C, Grossman R (2004) GenIc: a single pass generalized incremental algorithm for clustering. Proceedings SIAM conference on data mining, Lake Buena Vista

Harvey AC (1989) Forecasting, structural time series models and the Kalman filter. Cambridge University Press, Cambridge

Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference, and prediction. Springer, New York

CrossRefHaykin S (2001) Kalman filtering and neural networks. Wiley-Interscience, New York

CrossRefHossain MS, Tadepalli S, Watson LT, Davidson I, Helm RF, Ramakrishnan N (2010) Unifying dependent clustering and disparate clustering for non-homogeneous data. Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp 593–602

Infochimps-WWW (2012) NASDAQ Exchange Daily 1970–2010 Open, Close, High, Low and Volume data set.

http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open-close-high-low-and-volume
Ji X, Xu W (2006) Document clustering with prior knowledge. Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval, New York, pp 405–412

Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Logist Quart 2(1–2):83–97

CrossRefLedoit O, Wolf M (2003) Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J Empir Financ 10(5):603–621

CrossRefLi Y, Han J, Yang J (2004) Clustering moving objects. Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining

Lin YR, Chi Y, Zhu S, Sundaram H, Tseng BL (2009) Analyzing communities and their evolutions in dynamic social networks. ACM Trans Knowl Discov Data 3(2):8

CrossRefLütkepohl H (1997) Handbook of matrices. Wiley, New York

MacQueen J (1967) Some methods for classification and analysis of multivariate observations. Proceedings of the 5th Berkeley symposium on mathematical statistics and probability

Mankad S, Michailidis G, Kirilenko A (2011) Smooth plaid models: a dynamic clustering algorithm with application to electronic financial markets. Tech Rep.

http://ssrn.com/abstract=1787577
Milligan GW, Cooper MC (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika 50(2):159–179

CrossRefMucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980):876–878

CrossRefMATHMathSciNetNewman MEJ (2006) Modularity and community structure in networks. Proc Nat Acad Sci 103(23): 8577–8582

Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 14:849–856

Ning H, Xu W, Chi Y, Gong Y, Huang TS (2010) Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recog 43(1):113–127

CrossRefMATHRand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336): 846–850

Reynolds CW (1987) Flocks, herds, and schools: A distributed behavioral model. Proceedings of 14th annual conference on computer graphics and interactive techniques, Anaheim

Rosswog J, Ghose K (2008) Detecting and tracking spatio-temporal clusters with adaptive history filtering. Proceedings of the 8th IEEE international conference on data mining workshops, Pisa

Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Computat Appl Math 20:53–65

Schäfer J, Strimmer K (2005) A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat Appl Genet Mol Biol 4(1):32

MathSciNetShi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

CrossRefSun J, Papadimitriou S, Yu PS, Faloutsos C (2007) Graphscope: Parameter-free mining of large time-evolving graphs. Proceedings of 13th ACM SIGKDD conference on knowledge discovery and data mining

Tadepalli S, Ramakrishnan N, Watson LT, Mishra B, Helm RF (2009) Gene expression time courses by analyzing cluster dynamics. J Bioinforma Comput Biol 7(2):339–356

CrossRefTang L, Liu H, Zhang J, Nazeri Z (2008) Community evolution in dynamic multi-mode networks. Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining

Tantipathananandh C, Berger-Wolf T, Kempe D (2007) A framework for community identification in dynamic social networks. Proceedings of 13th ACM SIGKDD international conference on knowledge discovery and data mining

von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

CrossRefMathSciNetWagstaff K, Cardie C, Rogers S, Schroedl S (2001) Constrained K-means clustering with background knowledge. Proceedings of the 18th international conference on machine learning, pp 577–584

Wang X, Davidson I (2010) Flexible constrained spectral clustering. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp 563–572

Wang Y, Liu SX, Feng J, Zhou L (2007) Mining naturally smooth evolution of clusters from dynamic data. Proceedings of SIAM conference on data mining

Xu KS, Kliger M, Hero AO III (2010) Evolutionary spectral clustering with adaptive forgetting factor. Proceeding of IEEE international conference on acoustics, speech, and signal processing

Xu T, Zhang Z, Yu PS, Long B (2008a) Dirichlet process based evolutionary clustering. Proceedings of the 8th IEEE international conference on data mining

Xu T, Zhang Z, Yu PS, Long B (2008b) Evolutionary clustering by hierarchical Dirichlet process with hidden Markov state. Proceedings of the 8th IEEE international conference on data mining

Yahoo-WWW (2012) IXIC Historical Prices|NASDAQ composite stock—Yahoo! Finance.

http://finance.yahoo.com/q/hp?s=IXIC+Historical+Prices
Yang T, Chi Y, Zhu S, Gong Y, Jin R (2011) Detecting communities and their evolutions in dynamic social networks—a Bayesian approach. Mach Learn 82(2):157–189

CrossRefMATHMathSciNetZhang J, Song Y, Chen G, Zhang C (2009) On-line evolutionary exponential family mixture. Proceedings of the 21st international joint conference on artificial intelligence, Pasadena

Zhang J, Song Y, Zhang C, Liu S (2010) Evolutionary hierarchical Dirichlet processes for multiple correlated time-varying corpora. Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining