Aggarwal, C.C. and Yu, P.S. 2000. Finding generalized projected clusters in high dimensional spaces. In Proc. of SIGMOD 2000 Conference, pp. 70–81.

Aggrawal, C., Procopiuc, C., Wolf, J., Yu, P., and Park, J. 1999. Fast algorithms for projected clustering. In Proc. of 1999 ACM SIGMOD Int. Conf. on Management of Data, Philadelphia, PA.

Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P. 1998. Automatic subspace clustering of high dimensional data for data mining applications. In Proc. of 1998 ACM SIGMOD Int. Conf. on Management of Data, pp. 94–105.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A.I. 1996. Fast discovery of association rules. In Advances in Knowledge Discovery and Data Mining, U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.). AAAI/MIT Press, Chap 12, pp. 307–328.

Aho, A., Hopcroft, J., and Ullman, J. 1974. The Design and Analysis of Computer Algorithms. Addison-Welsley.

Arabie, P. and Hubert, L.J. 1996. An overview of combinatorial data analyis. In Clustering and Classification. P. Arabie, L. Hubert, and G.D. Soete, (Eds.). New Jersey: World Scientific Pub., pp. 5–63.

Google ScholarArbor Software Corporation. Application Manager User’s Guide, Essbase Version 4.0 edition.

Bayardo, R. 1998. Efficiently mining long patterns from databases. In Proc. of the ACM SIGMOD Conference on Management of Data, Seattle, Washington.

Berchtold, S., Bohm, C., Keim, D., and Kriegel, H.-P. 1997. A cost model for nearest neighbor search in high-dimensional data space. In Proceedings of the 16th Symposium on Principles of Database Systems (PODS), pp. 78–86.

Berger, M. and Regoutsos, I. 1991. An algorithm for point clustering and grid generation. IEEE Transactions on Systems, Man and Cybernetics, 21(5):1278–86.

Google ScholarBrin, S., Motwani, R., Ullman, J. D., and Tsur, S. 1997. Dynamic itemset counting and implication rules for market basket data. In Proc. of the ACM SIGMOD Conference on Management of Data.

Bronniman, H. and Goodrich, M. 1994. Almost optimal set covers in finite VC-dimension. In Proc. of the 10th ACM Symp. on Computational Geometry, pp. 293–302.

Cheeseman, P. and Stutz, J. 1996. Bayesian classification (autoclass): Theory and results. In Advances in Knowledge Discovery and Data Mining. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, (Eds.). Chap 6. AAAI/MIT Press, pp. 153–180.

Chhikara, R. and Register, D. 1979. A numerical classification method for partitioning of a large multidimensional mixed data set. Technometrics, 21:531–537.

Google ScholarDomeniconi, C., Papadopoulos, D., Gunopulos, D., and Ma, S. 2004. Subspace clustering of high dimensional data. SIAM International Conference on Data Mining (SDM).

Duda, R.O. and Hart, P.E. 1973. Pattern Classification and Scene Analysis. John Wiley and Sons.

Earle, R.J. 1994. Method and apparatus for storing and retrieving multi-dimensional data in computer memory. U.S. Patent No. 5359724.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. of the 2nd Int’l Conference on Knowledge Discovery in Databases and Data Mining, Portland, Oregon.

Ester, M., Kriegel, H. -P., and Xu, X. 1995. A database interface for clustering in large spatial databases. In Proc. of the 1st Int’l Conference on Knowledge Discovery in Databases and Data Mining, Montreal, Canada.

Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. (Eds.). 1996. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press.

Feige, U. 1996. A threshold of ln n for approximating set cover. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 314–318.

Franzblau, D. 1989. Performance guarantees on a sweep-line heuristic for covering rectilinear polygons with rectangles. SIAM J. Disc. Math, 2(3):307–321.

CrossRefGoogle ScholarFranzblau, D.S. and Kleitman, D.J. 1984. An algorithm for constructing regions with rectangles: Independence and minimum generating sets for collections of intervals. In Proc. of the 6th Annual Symp. on Theory of Computing, Washington D.C., pp. 268–276.

Friedman, J. 1997. Optimizing a noisy function of many variables with application to data mining. In UW/MSR Summer Research Institute in Data Mining.

Fukunaga, K. 1990. Introduction to Statistical Pattern Recognition. Academic Press.

Guha, S., Rastogi, R., and Shim, K. 1998. CURE: An efficient clustering algorithm for large databases. Proceedings of ACM SIGMOD, pp. 73–84.

Gunopulos, D., Khardon, R., Mannila, H., and Saluja, S. 1997. Data mining, hypergraph transversals, and machine learning. In Proc. of the 16th ACM Symp. on Principles of Database Systems, pp. 209–216.

Ho, C.-T., Agrawal, R., Megiddo, N., and Srikant, R. 1997. Range queries in OLAP data cubes. In Proc. of the ACM SIGMOD Conference on Management of Data, Tucson, Arizona.

Hong, S.J. 1987. MINI: A heuristic algorithm for two-level logic minimization. In Selected Papers on Logic Synthesis for Integrated Circuit Design, R. Newton (Eds.). IEEE Press.

Internationl Business Machines. 1996. IBM Intelligent Miner User’s Guide, Version 1 Release 1, SH12-6213-00 edition, July 1996.

Jain, A.K. and Dubes, R.C. 1988. Algorithms for Clustering Data. Prentice Hall.

Kaufman, L. and Rousseeuw, P. 1990. Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley and Sons.

Lin, D.-I. and Kedem, Z.M. 1998. Pincer search: A new algorithm for discovering the maximum frequent sets. In Proc. of the 6th Int’l Conference on Extending Database Technology (EDBT), Valencia, Spain.

Lovász, L. 1975. On the ratio of the optimal integral and fractional covers. Discrete Mathematics, 13:383–390.

CrossRefGoogle ScholarLund, C. and Yannakakis, M. 1993. On the hardness of approximating minimization problems. In Proceedings of the ACM Symposium on Theory of Computing, pp. 286–293.

Masek, W. 1978. Some NP-Complete Set Covering Problems. M.S. Thesis, MIT.

Mehta, M., Agrawal, R., and Rissanen, J. 1996. SLIQ: A fast scalable classifier for data mining. In Proc. of the Fifth Int’l Conference on Extending Database Technology (EDBT), Avignon, France.

Michalski, R.S. and Stepp, R.E. 1983. Learning from observation: Conceptual clustering. In Machine Learning: An Artificial Intelligence Approach, R.S. Michalski, J.G. Carbonell, and T. M. Mitchell (Eds.). Volume I. Morgan Kaufmann, pp. 331–363.

Miller, R. and Yang, Y. 1997. Association rules over interval data. In Proc. ACM SIGMOD International Conf. on Management of Data, pp. 452–461.

Ng, R.T. and Han, J. 1994. Efficient and effective clustering methods for spatial data mining. In Proc. of the VLDB Conference, Santiago, Chile.

Procopiuc, C.M., Jones, M., Agarwal, P.K., and Murali, T.M. 2002. A Monte Carlo algorithm for fast projective clustering. SIGMOD.

Reckhow, R.A. and Culberson, J. 1987. Covering simple orthogonal polygon with a minimum number of orthogonally convex polygons. In Proc. of the ACM 3rd Annual Computational Geometry Conference, pp. 268–277.

Rissanen, J. 1989. Stochastic Complexity in Statistical Inquiry. World Scientific Publ. Co.

Schroeter, P. and Bigun, J. 1995. Hierarchical image segmentation by multi-dimensional clustering and orientation-adaptive boundary refinement. Pattern Recognition, 25(5):695–709.

CrossRefGoogle ScholarShafer, J., Agrawal, R. and Mehta, M. 1996. SPRINT: A scalable parallel classifier for data mining. In Proc. of the 22nd Int’l Conference on Very Large Databases, Bombay, India.

Shoshani, A. Personal communication, 1997.

Sneath, P. and Sokal, R. 1973. Numerical Taxonomy. Freeman.

Soltan, V. and Gorpinevich, A. 1992. Minimum dissection of rectilinear polygon with arbitrary holes into rectangles. In Proc. of the ACM 8th Annual Computational Geometry Conference, Berlin, Germany, pp. 296–302.

Srikant, R. and Agrawal, R. 1996. Mining quantitative association rules in large relational tables. In Proc. of the ACM SIGMOD Conference on Management of Data, Montreal, Canada.

Toivonen, H. 1996. Sampling large databases for association rules. In Proc. of the 22nd Int’l Conference on Very Large Databases, Mumbai (Bombay), India, pp. 134–145.

Wharton, S. 1983. A generalized histogram clustering for multidimensional image data. Pattern Recognition, 16(2):193–199.

CrossRefGoogle ScholarZait, M. and Messatfa, H. 1997. A comparative study of clustering methods. Future Generation Computer Systems, 13(2-3):149–159.

CrossRefGoogle ScholarZhang, D. and Bowyer, A. 1986. CSG set-theoretic solid modelling and NC machining of blend surfaces. In Proceedings of the Second Annual ACM Symposium on Computational Geometry, pp. 314–318.

Zhang, T., Ramakrishnan, R., and Livny, M. 1996. BIRCH: An efficient data clustering method for very large databases. In Proc. of the ACM SIGMOD Conference on Management of Data, Montreal, Canada.