, Volume 17, Issue 2, pp 221-249,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 28 Jun 2012

On the hard-real-time scheduling of embedded streaming applications

Abstract

In this paper, we consider the problem of hard-real-time (HRT) multiprocessor scheduling of embedded streaming applications modeled as acyclic dataflow graphs. Most of the hard-real-time scheduling theory for multiprocessor systems assumes independent periodic or sporadic tasks. Such a simple task model is not directly applicable to dataflow graphs, where nodes represent actors (i.e., tasks) and edges represent data-dependencies. The actors in such graphs have data-dependency constraints and do not necessarily conform to the periodic or sporadic task models. In this work, we prove that the actors in acyclic Cyclo-Static Dataflow (CSDF) graphs can be scheduled as periodic tasks. Moreover, we provide a framework for computing the periodic task parameters (i.e., period and start time) of each actor, and handling sporadic input streams. Furthermore, we define formally a class of CSDF graphs called matched input/output (I/O) rates graphs which represents more than 80 % of streaming applications. We prove that strictly periodic scheduling is capable of achieving the maximum achievable throughput of an application for matched I/O rates graphs. Therefore, hard-real-time schedulability analysis can be used to determine the minimum number of processors needed to schedule matched I/O rates applications while delivering the maximum achievable throughput. This can be of great use for system designers during the Design Space Exploration (DSE) phase.