Skip to main content

Advertisement

Log in

ReNCell VM conditioned medium enhances the induction of dental pulp stem cells into dopaminergic like cells

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Among the debilitating diseases, neurological related diseases are the most challenging ones to be treated using cell replacement therapies. Recently, dental pulp stem cells (SHED) were found to be most suitable cell choice for neurological related diseases as evidenced with many preclinical studies. To enhance the neurological potential of SHED, we recapitulated one of the pharmacological therapeutic tools in cell replacement treatment, we pre-conditioned dental pulp stem cells (SHED) with culture medium of ReNCell VM, an immortalized neuron progenitor cell, prior to neurogenesis induction and investigated whether this practice enhances their neurogenesis potential especially towards dopaminergic neurons. We hypothesed that the integration of pharmacological practices such as co-administration of various drugs, a wide range of doses and duration as well as pre-conditioning into cell replacement may enhance the efficacy of stem cell therapy. In particular, pre-conditioning is shown to be involved in the protective effect from some membrano-tropic drugs, thereby improving the resistance of cell structures and homing capabilities. We found that cells pre-treated with ReNCell VM conditioned medium displayed bipolar structures with extensive branches resembling putative dopaminergic neurons as compared to non-treated cells. Furthermore, many neuronal related markers such as NES, NR4A2, MSI1, and TH were highly expressed (fold changes > 2; p < 0.05) in pre-treated cells. Similar observations were detected at the protein level. The results demonstrate for the first time that SHED pre-conditioning enhances neurological potential and we suggest that cells should be primed to their respective environment prior to transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abu Kasim NH, Govindasamy V, Gnanasegaran N, Musa S, Pradeep PJ, Srijaya TC, Aziz ZA (2012) Unique molecular signatures influencing the biological function and fate of post-natal stem cells isolated from different sources. J Tissue Eng Regen Med. doi:10.1002/term.1663

    Google Scholar 

  • Agoston Z, Heine P, Brill MS, Grebbin BM, Hau AC, Kallenborn-Gerhardt W, Schramm J, Götz M, Schulte D (2014) Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb. Development 141:28–38. doi:10.1242/dev.097295

    Article  CAS  Google Scholar 

  • Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32:252–260. doi:10.1038/nbt.2816

  • Chaudhry ZL, Ahmed BY (2013) Caspase-2 and caspase-8 trigger caspase-3 activation following 6-OHDA-induced stress in human dopaminergic neurons differentiated from ReNVM stem cells. Neurol Res 35:435–440. doi:10.1179/1743132812Y.0000000135

    Article  CAS  Google Scholar 

  • Chen T, Dent SY (2014) Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet 15:93–106. doi:10.1038/nrg3607

    Article  CAS  Google Scholar 

  • Choudhery MS, Khan M, Mahmood R, Mohsin S, Akhtar S, Ali F, Khan SN, Riazuddin S (2012) Mesenchymal stem cells conditioned with glucose depletion augments their ability to repair-infarcted myocardium. J Cell Mol Med 16:2518–2529. doi:10.1111/j.1582-4934.2012.01568.x

    Article  CAS  Google Scholar 

  • Daadi MM, Grueter BA, Malenka RC, Redmond DE Jr, Steinberg GK (2012) Dopaminergic neurons from midbrain-specified human embryonic stem cell-derived neural stem cells engrafted in a monkey model of Parkinson’s disease. PLoS One 7:e41120

    Article  CAS  Google Scholar 

  • Faigle R, Song H (2013) Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta 1830:2435–2448. doi:10.1016/j.bbagen.2012.09.002

    Article  CAS  Google Scholar 

  • Govindasamy V, Abdullah AN, Ronald VS, Musa S, Ab Aziz ZA, Zain RB, Totey S, Bhonde RR, Abu Kasim NH (2010a) Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. J Endod 36:1504–1515. doi:10.1016/j.joen.2010.05.006

    Article  Google Scholar 

  • Govindasamy V, Ronald VS, Totey S, Din SB, Mustafa WM, Totey S, Zakaria Z, Bhonde RR (2010b) Micro manipulation of culture niche permits long-term expansion of dental pulp stem cells—an economic and commercial angle. Vitro Cell Dev Biol Anim 46:764–773. doi:10.1007/s11626-010-9332-0

    Article  Google Scholar 

  • Govindasamy V, Ronald VS, Abdullah AN, Nathan KR (2011) Differentiation of dental pulp stem cells into islet-like aggregates. J Dent Res 90:646–652. doi:10.1177/0022034510396879

    Article  CAS  Google Scholar 

  • Hagemann TL, Paylor R, Messing A (2013) Deficits in adult neurogenesis, contextual fear conditioning, and spatial learning in a Gfap mutant mouse model of Alexander disease. J Neurosci 33:18698–18706. doi:10.1523/JNEUROSCI.3693-13.2013

    Article  CAS  Google Scholar 

  • Hass R, Kasper C, Böhm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12

    Article  CAS  Google Scholar 

  • Hernández-Benítez R, Vangipuram SD, Ramos-Mandujano G, Lyman WD, Pasantes-Morales H (2013) Taurine enhances the growth of neural precursors derived from fetal human brain and promotes neuronal specification. Dev Neurosci 35:40–49. doi:10.1159/000346900

    Article  Google Scholar 

  • Hong S, Kang UJ, Isacson O, Kim KS (2008) Neural precursors derived from human embryonic stem cells maintain long-term proliferation without losing the potential to differentiate into all three neural lineages, including dopaminergic neurons. J Neurochem 104:316–324

    CAS  Google Scholar 

  • Hong S, Chung S, Leung K, Hwang I, Moon J, Kim KS (2014) Functional roles of nurr1, pitx3, and lmx1a in neurogenesis and phenotype specification of dopamine neurons during in vitro differentiation of embryonic stem cells. Stem Cells Dev 23:477–487. doi:10.1089/scd.2013.0406

    Article  CAS  Google Scholar 

  • Horn AP, Bernardi A, Luiz Frozza R, Grudzinski PB, Hoppe JB, de Souza LF, Chagastelles P, de Souza Wyse AT, Bernard EA, Battastini AM, Campos MM, Lenz G, Nardi NB, Salbego C (2011) Mesenchymal stem cell-conditioned medium triggers neuroinflammation and reactive species generation in organotypic cultures of rat hippocampus. Stem Cells Dev 20:1171–1181. doi:10.1089/scd.2010.0157

    Article  CAS  Google Scholar 

  • Ishkitiev N, Yaegaki K, Imai T, Tanaka T, Nakahara T, Ishikawa H, Mitev V, Haapasalo M (2012) High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. J Endod 38:475–480

    Article  Google Scholar 

  • Jaeger A, Baake J, Weiss DG, Kriehuber R (2013) Glycogen synthase kinase-3beta regulates differentiation-induced apoptosis of human neural progenitor cells. Int J Dev Neurosci 31:61–68. doi:10.1016/j.ijdevneu.2012.10.005

    Article  CAS  Google Scholar 

  • Kanafi M, Majumdar D, Bhonde R, Datta I (2014) Midbrain cues dictate differentiation of human dental pulp stem cells towards functional dopaminergic neurons. J Cell Physiol 229:1369–1377. doi:10.1002/jcp.24570

  • Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, Haruta M, Takahashi M, Yoshikawa K, Nishikawa SI (2002) Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci 99:1580–1585

    Article  CAS  Google Scholar 

  • Kim HJ, Sugimori M, Nakafuku M, Svendsen CN (2007) Control of neurogenesis and tyrosine hydroxylase expression in neural progenitor cells through bHLH proteins and Nurr1. Exp Neurol 203:394–405

    Article  CAS  Google Scholar 

  • Knight MN, Hankenson KD (2013) Mesenchymal stem cells in bone regeneration. Adv Wound Care 2:306–316

    Article  Google Scholar 

  • Lagace DC, Whitman MC, Noonan MA, Ables JL, DeCarolis NA, Arguello AA, Donovan MH, Fischer SJ, Farnbauch LA, Beech RD, DiLeone RJ, Greer CA, Mandyam CD, Eisch AJ (2007) Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. J Neurosci 27:12623–12629

    Article  CAS  Google Scholar 

  • Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193

    Article  CAS  Google Scholar 

  • Lu Z, Wang G, Dunstan CR, Chen Y, Lu WY, Davies B, Zreiqat H (2013) Activation and promotion of adipose stem cells by tumour necrosis factor-α preconditioning for bone regeneration. J Cell Physiol 228:1737–1744. doi:10.1002/jcp.24330

    Article  CAS  Google Scholar 

  • Masoud MS, Anwar SS, Afzal MZ, Mehmood A, Khan SN, Riazuddin S (2012) Pre-conditioned mesenchymal stem cells ameliorate renal ischemic injury in rats by augmented survival and engraftment. J Transl Med 10:243. doi:10.1186/1479-5876-10-243

    Article  CAS  Google Scholar 

  • Mußmann C, Hübner R, Trilck M, Rolfs A, Frech MJ (2014) HES5 is as a key mediator of Wnt-3a induced neuronal differentiation. Stem Cells Dev 23:1328–1339

  • Neher JJ, Brown GC, Kinsner-Ovaskainen A, Bal-Price A (2011) Inflammation and reactive oxygen/nitrogen species in glial/neuronal cultures. Cell Culture Tech. Humana Press, New Jersey, pp. 331–347

  • Plotnikov EY, Pulkova NV, Pevzner IB, Zorova LD, Silachev DN, Morosanova MA, Sukhikh GT, Zorov DB (2013) Inflammatory pre-conditioning of mesenchymal multipotent stromal cells improves their immunomodulatory potency in acute pyelonephritis in rats. Cytotherapy 15:679–689. doi:10.1016/j.jcyt.2013.02.003

    Article  CAS  Google Scholar 

  • Pozniak CD, Pleasure SJ (2006) Genetic control of hippocampal neurogenesis. Genome Biol 7:207. doi:10.1186/gb-2006-7-3-207

    Article  Google Scholar 

  • Ruiz C, Casarejos MJ, Gomez A, Solano R, de Yebenes JG, Mena MA (2012) Protection by glia-conditioned medium in a cell model of Huntington disease. PLoS Currents 4. doi:10.1371/4fbca54a2028b

  • Samper E, Diez-Juan A, Montero J, Sepúlveda P (2013) Cardiac cell therapy: boosting mesenchymal stem cells effects. Stem Cell Rev Rep 9:266–280

    Article  CAS  Google Scholar 

  • Sethe S, Scutt A, Stolzing A (2006) Aging of mesenchymal stem cells. Ageing Res Rev 5:91–116

    Article  CAS  Google Scholar 

  • Skuk D (2013) Cell transplantation and “stem cell therapy” in the treatment of myopathies: many promises in mice, few realities in humans. ISRN Transplant 2013:25. doi:10.5402/2013/582689

    Article  Google Scholar 

  • Wang J, Wang X, Sun Z, Wang X, Yang H, Shi S, Wang S (2010) Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 19:1375–1383. doi:10.1089/scd.2009.0258

    Article  CAS  Google Scholar 

  • Whone AL, Kemp K, Sun M, Wilkins A, Scolding NJ (2012) Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res 1431:86–96

    Article  CAS  Google Scholar 

  • Wu KH, Mo XM, Han ZC, Zhou B (2011) Cardiac cell therapy: pre-conditioning effects in cell-delivery strategies. Cytotherapy 14:260–266. doi:10.3109/14653249.2011.643780

    Article  Google Scholar 

  • Yazid FB, Gnanasegaran N, Kunasekaran W, Govindasamy V, Musa S (2014) Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth. Clin Oral Investig. doi:10.1007/s00784-014-1207-4

Download references

Acknowledgments

This work is part of research collaboration between Hygieia Innovation and the Faculty of Dentistry, University of Malaya. This work is supported by the University of Malaya, High Impact Research Grant, Ministry of Higher Education, Malaysia (Grant No. UM.C/HIR/MOHE/DENT/01).

Conflict of interest

Authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayendran Govindasamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnanasegaran, N., Govindasamy, V., Musa, S. et al. ReNCell VM conditioned medium enhances the induction of dental pulp stem cells into dopaminergic like cells. Cytotechnology 68, 343–353 (2016). https://doi.org/10.1007/s10616-014-9787-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-014-9787-z

Keywords

Navigation