Skip to main content
Log in

Genetic structure of Florida green turtle rookeries as indicated by mitochondrial DNA control region sequences

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Green turtle (Chelonia mydas) nesting has increased dramatically in Florida over the past two decades, ranking the Florida nesting aggregation among the largest in the Greater Caribbean region. Individual beaches that comprise several hundred kilometers of Florida’s east coast and Keys support tens to thousands of nests annually. These beaches encompass natural to highly developed habitats, and the degree of demographic partitioning among rookeries was previously unresolved. We characterized the genetic structure of ten Florida rookeries from Cape Canaveral to the Dry Tortugas through analysis of 817 base pair mitochondrial DNA (mtDNA) control region sequences from 485 nesting turtles. Two common haplotypes, CM-A1.1 and CM-A3.1, accounted for 87 % of samples, and the haplotype frequencies were strongly partitioned by latitude along Florida’s Atlantic coast. Most genetic structure occurred between rookeries on either side of an apparent genetic break in the vicinity of the St. Lucie Inlet that separates Hutchinson Island and Jupiter Island, representing the finest scale at which mtDNA structure has been documented in marine turtle rookeries. Florida and Caribbean scale analyses of population structure support recognition of at least two management units: central eastern Florida and southern Florida. More thorough sampling and deeper sequencing are necessary to better characterize connectivity among Florida green turtle rookeries as well as between the Florida nesting aggregation and others in the Greater Caribbean region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu-Grobois A, Horrocks J, Formia A et al (2006) New mtDNA d-loop primers which work for a variety of marine turtle species may increase the resolution of mixed stock analyses. In: Frick M, Panagopoulou A, Rees A, Williams KL (eds) Book of abstracts twenty-sixth annual symposium on sea turtle biology and conservation. International Sea Turtle Society, Athens, p 179

    Google Scholar 

  • Allard MW, Miyamoto MM, Bjorndal KA, Bolten AB, Bowen BW (1994) Support for natal homing in green turtles from mitochondrial DNA sequences. Copeia 1994:34–41

    Article  Google Scholar 

  • Anderson JD, Shaver DJ, Karel WJ (2013) Genetic diversity and natal origins of green turtles (Chelonia mydas) in the western Gulf of Mexico. J Herpetol 47:251–257

    Article  Google Scholar 

  • Audubon J (1926) Delineations of American Scenery and Character. G.A. Baker and Company, New York

    Google Scholar 

  • Bagda E, Bardakci F, Turkozan O (2012) Lower genetic structuring in mitochondrial DNA than nuclear DNA among the nesting colonies of green turtles (Chelonia mydas) in the Mediterranean. Biochem Syst Ecol 43:192–199

    Article  CAS  Google Scholar 

  • Bagley DA (2003) Characterizing juvenile green turtles, (Chelonia mydas), from three east central Florida developmental habitats. Masters thesis. University of Central Florida, Orlando, Florida

  • Balazs G (1999) Factors to consider in the tagging of sea turtles. In: Eckert K, Bjorndal KA, Abreu-Grobois FA, Donnelly M (eds) Research and management techniques for the conservation of sea turtles. IUCN-SSC Marine Turtle Specialist Group, Washington

    Google Scholar 

  • Bass AL, Witzell WN (2000) Demographic composition of immature green turtles (Chelonia mydas) from the east central Florida coast: evidence from mtDNA markers. Herpetologica 56:357–367

    Google Scholar 

  • Bass AL, Epperly SP, Braun-McNeill J (2006) Green turtle (Chelonia mydas) foraging and nesting aggregations in the Caribbean and Atlantic: impacts of currents and behavior on dispersal. J Hered 97:346–354

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Bjorndal KA, Bolten AB (2008) Annual variation in source contributions to a mixed stock: implications for quantifying connectivity. Mol Ecol 17:2185–2193

    Article  PubMed  Google Scholar 

  • Bjorndal KA, Meylan AB, Turner BJ (1983) Sea turtles nesting at Melbourne Beach, Florida, I. Size, growth and reproductive biology. Biol Conserv 26:65–77

    Article  Google Scholar 

  • Bjorndal KA, Bolten AB, Troëng S (2005) Population structure and genetic diversity in green turtles nesting at Tortuguero, Costa Rica, based on mitochondrial DNA control region sequences. Mar Biol 147:1449–1457

    Article  CAS  Google Scholar 

  • Bjorndal KA, Bolten AB, Moreira L, Bellini C, Marcovaldi MA (2006) Population structure and diversity of Brazilian green turtle rookeries based on mitochondrial DNA sequences. Chelonian Conserv Biol 5:262–268

    Article  Google Scholar 

  • Bolker B, Okuyama T, Bjorndal K, Bolten A (2007) Incorporating multiple mixed stocks in mixed stock analysis: ‘many-to-many’ analyses. Mol Ecol 16:685–695

    Article  CAS  PubMed  Google Scholar 

  • Bowen BW, Karl SA (2007) Population genetics and phylogeography of sea turtles. Mol Ecol 16:4886–4907

    Article  CAS  PubMed  Google Scholar 

  • Bowen BW, Meylan AB, Ross JP, Limpus C, Balazs G, Avise JC (1992) Global population structure and natural history of the green turtle (Chelonia mydas) in terms of matriarchal phylogeny. Evolution 46:175–186

    Article  Google Scholar 

  • Bowen BW, Bass AL, Soares L, Toonen RJ (2005) Conservation implications of complex population structure: lessons from the loggerhead turtle (Caretta caretta). Mol Ecol 14:2389–2402

    Article  CAS  PubMed  Google Scholar 

  • Briggs JC (1974) Marine zoogeography. McGraw-Hill, New York

    Google Scholar 

  • Browne DC, Horrocks JA, Abreu-Grobois FA (2010) Population subdivision in hawksbill turtles nesting in Barbados, West Indies, determined from mitochondrial DNA control region sequences. Conserv Genet 11:1541–1546

    Article  Google Scholar 

  • Carr A (1967) So excellent a fishe. The Natural History Press, Garden City

    Google Scholar 

  • Carr A, Ingle RM (1959) The green turtle (Chelonia mydas) in Florida. Bull Mar Sci Gulf Caribb 9:315–320

    Google Scholar 

  • Chaloupka M, Bjorndal K, Balazs G, Bolten A, Ehrhart LM, Limpus CJ, Suganuma H, Troëng S, Yamaguchi M (2008) Encouraging outlook for recovery of a once severely exploited marine megaherbivore. Global Ecol Biogeogr 17:297–304

    Article  Google Scholar 

  • Clusa M, Carreras C, Pascual M et al (2013) Mitochondrial DNA reveals Pleistocene colonization of the Mediterranean by loggerhead turtles (Caretta caretta). J Exp Mar Biol Ecol 439:15–24

    Article  Google Scholar 

  • Dethmers KE, Broderick D, Moritz C, FitzSimmons NN, Limpus CJ, Lavery S, Whiting S, Guinea M, Prince RIT, Kennett R (2006) The genetic structure of Australasian green turtles (Chelonia mydas): exploring the scale of genetic exchange. Mol Ecol 15:3931–3946

  • Dittman A, Quinn T (1996) Homing in Pacific salmon: mechanisms and ecological basis. J Exp Biol 199:83–91

    PubMed  Google Scholar 

  • Dodd C Jr (1982) Nesting of the green turtle, Chelonia mydas (L.) in Florida: historic review and present trends. Brimleyana 7:39–54

    Google Scholar 

  • Dow W, Eckert K, Palmer M, Kramer P (2007) An Atlas of Sea Turtle Nesting Habitat for the Wider Caribbean Region. The Wider Caribbean Sea Turtle Conservation Network and the Nature Conservancy. WIDECAST Technical Report No. 6. Beaufort, North Carolina

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Encalada S, Lahanas P, Bjorndal KA, Bolten AB, Miyamoto M, Bowen BW (1996) Phylogeography and population structure of the Atlantic and Mediterranean green turtle Chelonia mydas: a mitochondrial DNA control region sequence assessment. Mol Ecol 5:473–483

    Article  CAS  PubMed  Google Scholar 

  • Endres CS, Putman NF, Lohmann KJ (2009) Perception of airborne odors by loggerhead sea turtles. J Exp Biol 212:3823–3827

    Article  CAS  PubMed  Google Scholar 

  • Engle VD, Summers JK (1999) Latitudinal gradients in benthic community composition in Western Atlantic estuaries. J Biogeogr 26:1007–1023

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetic analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • FitzSimmons NN, Limpus CJ, Norman JA, Goldizen AR, Miller JD, Moritz C (1997) Philopatry of male marine turtles inferred from mitochondrial DNA markers. Proc Nat Acad Sci USA 94:8912–8917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Formia A, Godley B, Dontaine J-F, Bruford MW (2006) Mitochondrial DNA diversity and phylogeography of endangered green turtle (Chelonia mydas) populations in Africa. Conserv Genet 7:353–369

    Article  CAS  Google Scholar 

  • Grassman MA, Owens DW, McVey JP, Marquez RM (1984) Olfactory-based orientation in artificially imprinted sea turtles. Science 224:83–84

    Article  CAS  PubMed  Google Scholar 

  • Hamann M, Godfrey MH, Seminoff JA et al (2010) Global research priorities for sea turtles: informing management and conservation in the 21st century. Endanger Species Res 11:245–269

    Article  Google Scholar 

  • Hart KM, Zawada DG, Fujisaki I, Lidz BH (2013) Habitat use of breeding green turtles Chelonia mydas tagged in Dry Tortugas National Park: making use of local and regional MPAs. Biol Conserv 161:142–154

    Article  Google Scholar 

  • Hays GC, Åkesson S, Broderick AC, Glen F, Godley BJ, Papi F, Luschi P (2003) Island-finding ability of marine turtles. Proc R Soc Lond 270:S5–S7

    Article  Google Scholar 

  • Hoelzel AR (1998) Genetic structure of cetacean populations in sympatry, parapatry, and mixed assemblages: implications for conservation policy. J Hered 89:451–458

    Article  Google Scholar 

  • Jackson JBC (1997) Reefs since Columbus. Coral Reefs 16:S23–S32

    Article  Google Scholar 

  • Johnson SA (1994) Reproductive ecology of the Florida green turtle (Chelonia mydas). Masters thesis. University of Central Florida, Orlando, Florida

  • Karl SA, Bowen BW, Avise JC (1992) Global population genetic structure and male-mediated gene flow in the green turtle (Chelonia mydas): RFLP analyses of anonymous nuclear loci. Genetics 131:163–173

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaska Y (2000) Genetic structure of Mediterranean sea turtle populations. Turk J Zool 24:191–197

    CAS  Google Scholar 

  • Lahanas P, Bjorndal KA, Bolten AB, Encalada S, Miyamoto MM, Valverde RA, Bowen BW (1998) Genetic composition of a green turtle (Chelonia mydas) feeding ground population: evidence for multiple origins. Mar Biol 130:345–352

    Article  Google Scholar 

  • Lindeman KC, McCarthy DA, Holloway-Adkins KG, Snyder DB (2009) Ecological functions of nearshore hardbottom habitats in East Florida: a literature synthesis. Prepared for the Florida Department of Environmental Protection Bureau of Beaches and Coastal Systems. Tallahassee, Florida

  • Lohmann KJ, Luschi P, Hays GC (2008a) Goal navigation and island-finding in sea turtles. J Exp Mar Biol Ecol 356:83–95

    Article  Google Scholar 

  • Lohmann KJ, Putman NF, Lohmann CMF (2008b) Geomagnetic imprinting: a unifying hypothesis of long-distance natal homing in salmon and sea turtles. Proc Nat Acad Sci USA 105:19096–19101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luschi P, Åkesson S, Broderick AC, Glen F, Godley BJ, Papi F, Hays GC (2001) Testing the navigational abilities of ocean migrants: displacement experiments on green sea turtles (Chelonia mydas). Behav Ecol Sociobiol 50:528–534

    Article  Google Scholar 

  • Luschi P, Benhamou S, Girard C, Ciccione S, Roos D, Sudre J, Benvenuti S (2007) Marine turtles use geomagnetic cues during open-sea navigation. Curr Biol 17:126–133

    Article  CAS  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Manton M, Karr A, Ehrenfeld DW (1972) Chemoreception in the migratory sea turtle, Chelonia mydas. Biol Bull 143:184–195

    Article  Google Scholar 

  • McClenachan L, Jackson JBC, Newman MJH (2006) Conservation implications of historic sea turtle nesting beach loss. Front Ecol Environ 4:290–296

    Article  Google Scholar 

  • Meirmans PG (2012) The trouble with isolation by distance. Mol Ecol 21:2839–2846

    Article  PubMed  Google Scholar 

  • Meylan AB, Bowen BW, Avise JC (1990) A genetic test of natal homing versus social facilitation models for green turtle migration. Science 248:724–727

    Article  CAS  PubMed  Google Scholar 

  • Monzón-Argüello C, López-Jurado LF, Rico C, Marco A, Lopez P, Hays GC, Lee PLM (2010) Evidence from genetic and Lagrangian drifter data for transatlantic transport of small green turtles. J Biogeogr 37:1752–1766

    Article  Google Scholar 

  • Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  PubMed  Google Scholar 

  • Naro-Maciel E, Bondioli ACV, Martin M, Almeida AP, Baptistotte C, Marcovaldi MÂ, Santos AJB, Amato G (2012) The interplay of homing and dispersal in green turtles: a focus on the Southwestern Atlantic. J Hered 103:792–805

    Article  PubMed  Google Scholar 

  • Naro-Maciel E, Reid BN, Alter SE et al (2014) From refugia to rookeries: phylogeography of Atlantic green turtles. J Exp Mar Biol Ecol 461:306–316

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Owens DW, Grassman MA, Hendrickson JR (1982) The imprinting hypothesis and sea turtle reproduction. Herpetologica 38:124–135

    Google Scholar 

  • Papi F, Luschi P, Åkesson S, Capogrossi S, Hays GC (2000) Open-sea migration of magnetically disturbed sea turtles. J Exp Biol 203:3435–3443

    CAS  PubMed  Google Scholar 

  • Parsons J (1962) The green turtle and man. University of Florida Press, Gainesville

    Google Scholar 

  • Pelc RA, Warner RR, Gaines SD (2009) Geographical patterns of genetic structure in marine species with contrasting life histories. J Biogeogr 36:1881–1890

    Article  Google Scholar 

  • Putman NF, Naro-Maciel E (2013) Finding the ‘lost years’ in green turtles: insights from ocean circulation models and genetic analyses. Proc R Soc Lond B 280:20131468

    Article  Google Scholar 

  • Putman NF, Bane JM, Lohmann KJ (2010) Sea turtle nesting distributions and oceanographic constraints on hatchling migration. Proc R Soc Lond B 277:3631–3637

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) An exact test of population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Roberts MA, Schwartz TS, Karl SA (2004) Global population genetic structure and male- mediated gene flow in the green sea turtle (Chelonia mydas): analysis of microsatellite loci. Genetics 166:1857–1870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rousset F (1997) Genetic differentiation. Genetics 145:1219–1228

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ruiz-Urquiola A, Riverón-Giró F, Pérez-Bermúdez E et al (2010) Population genetic structure of Greater Caribbean green turtles (Chelonia mydas) based on mitochondrial DNA sequences, with an emphasis on rookeries from southwestern Cuba. Rev Invest Mar 31:33–52

    Google Scholar 

  • Shamblin BM, Dodd MG, Bagley DA et al (2011a) Genetic structure of the southeastern United States loggerhead turtle nesting aggregation: evidence of additional structure within the peninsular Florida recovery unit. Mar Biol 158:571–587

    Article  Google Scholar 

  • Shamblin BM, Dodd M, Williams KL, Frick MG, Bell R, Nairn CJ (2011b) Loggerhead turtle eggshells as a source of maternal nuclear genomic DNA for population genetic studies. Mol Ecol Resour 11:110–115

    Article  PubMed  Google Scholar 

  • Shamblin BM, Bjorndal KA, Bolten AB, Nairn CJ (2012a) Natal homing by an adult male green turtle at Tortuguero, Costa Rica. Mar Turt Newsl 134:21–22

    Google Scholar 

  • Shamblin BM, Bolten AB, Bjorndal KA et al (2012b) Expanded mitochondrial control region sequences increase resolution of stock structure among North Atlantic loggerhead turtle rookeries. Mar Ecol Prog Ser 469:145–160

    Article  Google Scholar 

  • Shamblin BM, Bjorndal KA, Bolten AB, Hillis-Starr ZM, Lundgren I, Naro-Maciel E, Nairn CJ (2012c) Mitogenomic sequences better resolve stock structure of southern Greater Caribbean green turtle rookeries. Mol Ecol 21:2330–2340

    Article  CAS  PubMed  Google Scholar 

  • Tikochinski Y, Bendelac R, Barash A, Daya A, Levy Y, Friedmann A (2012) Mitochondrial DNA STR analysis as a tool for studying the green sea turtle (Chelonia mydas) populations: the Mediterranean Sea case study. Mar Genomics 6:17–24

    Article  CAS  PubMed  Google Scholar 

  • Troëng S, Chaloupka M (2007) Variation in adult annual survival probability and remigration intervals of sea turtles. Mar Biol 151:1721–1730

    Article  Google Scholar 

  • Troëng S, Rankin E (2005) Long-term conservation efforts contribute to positive green turtle Chelonia mydas nesting trend at Tortuguero, Costa Rica. Biol Conserv 121:111–116

    Article  Google Scholar 

  • Witherington B, Bresette M, Herren R (2006) Chelonia mydas- green turtle. In: Meylan P (ed) Biology and conservation of Florida turtles. Chelonian Research Monographs 3. Chelonian Research Foundation. pp 90–104

  • Witherington B, Kubilis P, Brost B, Meylan A (2009) Decreasing annual nest counts in a globally important loggerhead sea turtle population. Ecol Appl 19:30–54

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the many students, interns, technicians, and volunteers associated with authors’ institutions for sample collection, in particular the University of Central Florida Marine Turtle Research Group students. Thank you to A. Meylan and B. Brost for providing FWRI Statewide Nesting Beach Survey data. We are grateful to M. Koperski and R. Trindell of Florida Fish and Wildlife Conservation Commission (FWC), P. Tritaik of Archie Carr National Wildlife Refuge, M. Stahl of Hobe Sound National Wildlife Refuge, and D. Watkins of the Florida Department of Environmental Protection for assistance with permitting. Sampling was conducted under FWC Marine Turtle Permits 010, 130, 135, and 176. Fieldwork and sampling in the Dry Tortugas was supported by the U.S. Priority Ecosystem Science Program. This research was funded in part by Grants awarded from the Sea Turtle Grants Program. The Sea Turtle Grants Program is funded from proceeds from the sale of the Florida Sea Turtle License Plate. Learn more at www.helpingseaturtles.org. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Shamblin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamblin, B.M., Bagley, D.A., Ehrhart, L.M. et al. Genetic structure of Florida green turtle rookeries as indicated by mitochondrial DNA control region sequences. Conserv Genet 16, 673–685 (2015). https://doi.org/10.1007/s10592-014-0692-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0692-y

Keywords

Navigation