Skip to main content

Advertisement

Log in

Insights into the biodiversity of the Succulent Karoo hotspot of South Africa: the population genetics of a rare and endemic halictid bee, Patellapis doleritica

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Population genetic analyses are especially relevant for species considered threatened or highly endemic and for which other forms of biological information are lacking. Patellapis doleritica is a recently described communally nesting halictid bee of conservation concern because it is rare and endemic to the Succulent Karoo of South Africa. Moreover, its dispersal is considered to be restricted by its specialised nesting requirements and inclement weather conditions during its limited annual flight period, traits which may be common to other bee species of the region. We hypothesised that gene flow in P. doleritica was low, leading to marked genetic differentiation. Using 7 microsatellites, we investigated its mating and population genetic structure in 258 individuals (171 females and 87 males) from 7 populations spanning most of its known range. Deviation from Hardy–Weinberg equilibrium (FIS = + 0.254) suggested P. doleritica to be inbred, as in many other communal nesting bee species. Global FST (0.028) and global G′ST (0.216) revealed modest but significant differentiation between most populations, even across the very limited range of the species (ca. 25 km), with one genetically extreme outlier population. Despite inbreeding, we detected a surprisingly low frequency of diploid males (2 %). Patellapis doleritica nevertheless deserves special conservation attention since it is an endemic species with a low overall abundance and therefore possibly prone to environmental change and local extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allendorf FW, Luikart G (2006) Conservation and the genetics of populations. Wiley-Blackwell, Oxford

    Google Scholar 

  • Ayabe T, Hoshiba H, Ono M (2004) Cytological evidence for triploid males and females in the bumblebee, Bombus terrestris. Chromosome Res 12:215–223

    Article  CAS  PubMed  Google Scholar 

  • Bartomeus I, Ascher JS, Gibbs J, Danforth BN, Wagner DL, Hedtke SM, Winfree R (2013) Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc Natl Acad Sci 110:4656–4660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biesmeijer JC, Roberts SP, Reemer M, Ohlemueller R, Edwards M, Peeters T, Schaffers A, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    Article  CAS  PubMed  Google Scholar 

  • Born J, Linder HP, Desmet P (2006) The greater cape floristic region. J Biogeogr 34:147–162

    Article  Google Scholar 

  • Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455

    Article  CAS  PubMed  Google Scholar 

  • Brown MJ, Paxton RJ (2009) The conservation of bees: a global perspective. Apidologie 40:410–416

    Article  Google Scholar 

  • Carvalheiro LG, Kunin WE, Keil P, Aguirre-Gutiérrez J, Ellis WN, Fox R, Groom Q, Hennekens S, Van Landuy W, Maes D, Van de Meutter F, Michez D, Rasmont P, Ode B, Potts SG, Reemer M, Roberts SPM, Schaminée J, WallisDeVries MF, Biesmeijer JC (2013) Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants. Ecol Lett 16:870–878

    Article  PubMed Central  PubMed  Google Scholar 

  • Černá K, Straka J, Munclinger P (2013) Population structure of pioneer specialist solitary bee Andrena vaga (Hymenoptera: Andrenidae) in central Europe: the effect of habitat fragmentation or evolutionary history? Conserv Genet 14:875–883

    Article  Google Scholar 

  • Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796

    Article  CAS  PubMed  Google Scholar 

  • Cook JM (1993) Sex determination in the Hymenoptera: a review of models and evidence. Heredity 71:421–435

    Article  Google Scholar 

  • Cook JM, Crozier RH (1995) Sex determination and population biology in the Hymenoptera. Trends Ecol Evol 10:281–286

    Article  CAS  PubMed  Google Scholar 

  • Cowan DP, Stahlhut JK (2004) Functionally reproductive diploid and haploid males in an inbreeding hymenopteran with complementary sex determination. Proc Natl Acad Sci USA 101:10374–10379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Darvill B, Ellis JS, Lye GC, Goulson D (2006) Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum, (Hymenoptera: Apidae). Mol Ecol 15:601–611

    Article  CAS  PubMed  Google Scholar 

  • Davis ES, Murray TE, Fitzpatrick U, Brown MJF, Paxton RJ (2010) Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis. Mol Ecol 19:4922–4935

    Article  PubMed  Google Scholar 

  • Dicks LV, Abrahams A, Atkinson J, Biesmeijer J, Bourn N, Brown C, Brown M, Carvell C, Connolly C, Cresswell J, Croft P, Darvill B, de Zylva P, Effingham P, Fountain M, Goggin A, Harding D, Harding T, Hartfield C, Heard MS, Heathcote R, Heaver D, Holland J, Howe M, Hughes B, Huxley T, Kunin WE, Little J, Mason C, Memmott J, Osborne J, Pankhurst T, Paxton RJ, Pocock M, Potts SG, Power E, Raine N, Ranelagh E, Roberts S, Saunders R, Smith K, Smith RM, Sutton P, Tilley L, Tinsley A, Tonhasca A, Vanbergen AJ, Webster S, Wilson A, Sutherland WJ (2013) Identifying key knowledge needs for evidence-based conservation of wild insect pollinators: a collaborative cross-sectoral exercise. Insect Conserv Divers 6:339–353

    Article  Google Scholar 

  • Dieringer D, Schlötterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Doums C, Ruel C, Clémencet J, Fédérici P, Cournault L, Aron S (2013) Fertile diploid males in the ant Cataglyphis cursor: a potential cost of thelytoky? Behav Ecol Sociobiol 67:1983–1993

    Article  Google Scholar 

  • Eardley C, Gikungu M, Schwarz MP (2009) Bee conservation in sub-Saharan Africa and Madagascar: diversity, status and threats. Apidologie 40:355–366

    Article  Google Scholar 

  • Fitzpatrick Ú, Murray TE, Paxton RJ, Breen J, Cotton D, Santorum V, Brown MJ (2007) Rarity and decline in bumblebees: a test of causes and correlates in the Irish fauna. Biol Conserv 136:185–194

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gerth M, Geißler A, Bleidorn C (2011) Wolbachia infections in bees (Anthophila) and possible implications for DNA barcoding. Syst Biodivers 9:319–327

    Article  Google Scholar 

  • Google Corporation (2012) Google Earth 6.2. http://www.google.com/earth/download/ge/. Accessed July 2012

  • Gustincich S, Manfioletti G, Del Sal G, Schneider C, Carninci P (1991) A fast method for high-quality genomic DNA extraction from whole human blood. Biotechniques 11:298–300

    CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B 270:S596–S599

    Article  Google Scholar 

  • Hedrick PW (2000) Genetics of populations. Jones and Bartlett, Sudbury

    Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Heimpel GE, de Boer JG (2008) Sex determination in the Hymenoptera. Annu Rev Entomol 53:209–230

    Article  CAS  PubMed  Google Scholar 

  • Hoffman JI, Amos W (2005) Microsatellite genotyping errors: detection, approaches, common sources and consequences for paternal exclusion. Mol Ecol 14:599–612

    Article  CAS  PubMed  Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Kuhlmann M (2008) Bees at the Cape-climate as a driving force of evolution? In: Schwenninger HR, Krogmann L, Mauss V (eds) Beiträge der Hymenopterologen-Tagung in Stuttgart (3.-5.10.2008). Deutsche Gesellschaft für allgemeine und angewandte Entomologie e.V., Müncheberg, pp 10–12

  • Kuhlmann M (2009) Patterns of diversity, endemism and distribution of bees (Insecta: Hymenoptera: Anthophila) in southern Africa. S Afr J Bot 75:726–738

    Article  Google Scholar 

  • Kuhlmann M, Guo D, Veldtman R, Donaldson J (2012) Consequences of warming up a hotspot: Species range shifts within a centre of bee diversity. Divers Distrib. doi:10.1111/j.1472-4642.2011.00877.x

    Google Scholar 

  • Linder PH, Johnson SD, Kuhlmann M, Matthee CA, Nyffeler R, Swartz ER (2010) Biotic diversity in the Southern African winter-rainfall region. Curr Opin Environ Sustain 2:109–116

    Article  Google Scholar 

  • Lombard AT, Hilton-Taylor C, Rebelo AG, Pressey RL, Cowling RM (1999) Reserve selection in the Succulent Karoo, South Africa: coping with high compositional turnover. Plant Ecol 142:35–55

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25:1982–1983

    Article  CAS  PubMed  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18

    Article  PubMed  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) Genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Michener CD (1974) The social behaviour of the bees. A comparative study. The Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Michener CD (2007) The bees of the world. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Murray TE, Fitzpatrick U, Brown MJ, Paxton RJ (2008) Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs. Conserv Genet 9:653–666

    Article  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Pamilo P (1985) Effect of inbreeding on genetic relatedness. Hereditas 103:195–200

    Article  CAS  PubMed  Google Scholar 

  • Paxton RJ (2005) Male mating behaviour and mating systems of bees: an overview. Apidologie 36:145–156

    Article  Google Scholar 

  • Paxton RJ, Tengö J (1996) Intranidal mating, emergence, and sex ratio in a communal bee Andrena jacobi Perkins 1921 (Hymenoptera: Andrenidae). J Insect Behav 9:421–440

    Article  Google Scholar 

  • Paxton RJ, Thorén PA, Tengö J, Estoup A, Pamilo P (1996) Mating structure and nestmate relatedness in a communal bee, Andrena jacobi (Hymenoptera, Andrenidae), using microsatellites. Mol Ecol 5:511–519

    Article  CAS  PubMed  Google Scholar 

  • Paxton RJ, Kukuk PF, Tengö J (1999) Effects of familiarity and nestmate number on social interactions in two communal bees, Andrena scotica and Panurgus calcaratus (Hymenoptera, Andrenidae). Insect Soc 49:109–118

    Article  Google Scholar 

  • Paxton RJ, Thoren PA, Gyllenstrand N, Tengo J (2000) Microsatellite DNA analysis reveals low diploid male production in a communal bee with inbreeding. Biol J Linn Soc 69:483–502

    Article  Google Scholar 

  • Paxton RJ, Arévalo E, Field J (2003) Microsatellite loci fort the eusocial Lasioglossum malachurum and other sweat bees (Hymenoptera, Halictidae). Mol Ecol Notes 3:82–84

    Article  CAS  Google Scholar 

  • Peterson MA, Denno RF (1998) The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects. Am Nat 152:428–446

    Article  CAS  PubMed  Google Scholar 

  • Petit RJ, Deguilloux MF, Chat J, Grivet D, Garnier-Géré P, Vendramin GG (2005) Standardizing for microsatellite length in comparisons of genetic diversity. Mol Ecol 14:885–890

    Article  CAS  PubMed  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Procheş S, Cowling RM, du Preez DR (2005) Patterns of geophyte diversity and storage organ size in the winter-rainfall region of southern Africa. Divers Distrib 11:101–109

    Article  Google Scholar 

  • Ratnasingham S, Hebert PD (2007) Bold: the barcode of life data system. Mol Ecol Notes 7:355–364. http://www.barcodinglife.org. Accessed July 2012

  • Rice WR (1990) A consensus combined p-value and the family-wide significance of component tests Biometrics 46:303–308

    Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes 6:600–602

    Article  Google Scholar 

  • Schwarz MP, Richards MH, Danforth BN (2007) Changing paradigms in insect social evolution: insights from halictine and allodapine bees. Annu Rev Entomol 52:127–150

    Article  CAS  PubMed  Google Scholar 

  • Sheffield CS, Hebert PDN, Kevan PG, Packer L (2009) DNA barcoding a regional bee (Hymenoptera: Apoidea) fauna and its potential for ecological studies. Mol Ecol Resour 9:196–207

    Article  CAS  PubMed  Google Scholar 

  • Song H, Buhay JE, Whiting MF, Crandall KA (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci USA 105:13486–13491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soro A, Paxton RJ (2009) Characterization of 14 polymorphic microsatellite loci for the facultatively eusocial sweat bee Halictus rubicundus (Hymenoptera, Halictidae) and their variability in related species. Mol Ecol Notes 9:150–152

    Article  CAS  Google Scholar 

  • Soro A, Ayasse M, Zobel MU, Paxton RJ (2009) Complex sociogenetic organization and the origin of unrelated workers in a eusocial sweat bee, Lasioglossum malachurum. Insectes Soc 56:55–63

    Article  Google Scholar 

  • Soucy SL, Danforth BN (2002) Phylogeography of the socially polymorphic sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Evolution 56:330–341

    Article  PubMed  Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molar evolutionary genetics analysis using likelihood, distance, and parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Timmermann K (2008) The bee genus Patellapis Friese: taxonomic revision of three subgenera and first ecological investigations. Dissertation, University of Münster

  • Timmermann K, Kuhlmann M (2008) The biology of a Patellapis (s. str.) species (Hymenoptera: Apoides: Halictidae): sociality described for the first time in this bee genus. Apidologie 39:189–197

    Article  Google Scholar 

  • Timmermann K, Kuhlmann M (2009) Taxonomic revision of the African bee subgenera Patellapis, Chaetalictus and Lomatalictus (Hymenoptera: Halictidae, genus Patellapis Friese 1909). Zootaxa 2099:1–188

    Google Scholar 

  • Ulrich Y, Perrin N, Chapuisat M (2009) Flexible social organization and high incidence of drifting in the sweat bee, Halictus scabiosae. Mol Ecol 18:1791–1800

    Article  PubMed  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley PF (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • van Wilgenburg E, Driessen G, Beukeboom L (2006) Single locus complementary sex determination in Hymenoptera: an ‘unintelligent’ design? Front Zool 3:1–15

    Article  PubMed Central  PubMed  Google Scholar 

  • Vanbergen AJ (2013) Insect pollinators initiative. Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11:251–259

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Zayed A (2009) Bee genetics and conservation. Apidologie 40:237–262

    Article  Google Scholar 

  • Zayed A, Packer L (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc Natl Acad Sci USA 102:10742–10746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Martin Schlegel for laboratory support and both him and Christoph Bleidorn for stimulating discussion and suggestions. Our thanks also go to Kim Timmermann, who provided us with literature on P. doleritica, Annemarie Geißler, Panagiotis Theodorou and Petra Leibe for their technical assistance. We also appreciate the very helpful correspondence with Patrick Meirmans, Nils Ryman and Michael Matschiner over research reported in this paper. MK is much indebted to the farmers in the vicinity of Nieuwoudtville and the Hantam Botanical Garden who provided access to their land for this study and Northern Cape Nature Conservation Service for giving their permission to collect bees. Hergen Erhardt and Ulrike Gigengack enthusiastically helped to collect bees at various occasions for this and other projects in the wider Nieuwoudtville area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belinda Kahnt.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahnt, B., Soro, A., Kuhlmann, M. et al. Insights into the biodiversity of the Succulent Karoo hotspot of South Africa: the population genetics of a rare and endemic halictid bee, Patellapis doleritica . Conserv Genet 15, 1491–1502 (2014). https://doi.org/10.1007/s10592-014-0633-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0633-9

Keywords

Navigation