Skip to main content
Log in

Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Fluxus Engineering (2012) Network 4.611

References

  • Akaike H (1974) A new look at statistical model identification. IEEE Trans Auto Control 19:716–723

    Article  Google Scholar 

  • Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the Genetics of Populations, 2nd edn. Wiley-Blackwell, Oxford

    Google Scholar 

  • Antão T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a FST-outlier method. BMC Bioinform 9:323

    Article  Google Scholar 

  • Archie EA, Luikart G, Ezenwa VO (2009) Infecting epidemiology with genetics: a new frontier in disease ecology. Trends Ecol Evol 24:21–30

    Article  PubMed  Google Scholar 

  • Aris-Brosou D, Excoffier I (1996) The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol Biol Evol 13:494–504

    Article  CAS  PubMed  Google Scholar 

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond 263:1619–1626

    Article  Google Scholar 

  • Birky CW Jr, Maruyama T, Fuerst P (1983) An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 103:513–527

    PubMed Central  PubMed  Google Scholar 

  • Bleich VC, Wehausen JD, Holl SA (1990) Desert-dwelling mountain sheep: conservation implications of a naturally fragmented distribution. Conserv Biol 4:383–390

    Article  Google Scholar 

  • Bowyer RT, Leslie DMJ (1992) Ovis dalli. Mamm Species 393:1–7

    Article  Google Scholar 

  • Boyce WM, Hedrick PW, Muggli-Ockett NE et al (1997) Genetic variation of major histocompatibility complex and micrdsatellite loci: a comparison in bighorn sheep. Genetics 145:421–433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boyce WM, Ramey RR II, Rodwell TC, Rubin ES, Singer RS (1999) Population subdivision among desert bighorn sheep (Ovis canadensis) ewes revealed by mitochondrial DNA analysis. Mol Ecol 8:99–106

    Article  CAS  PubMed  Google Scholar 

  • Chesser RK (1991a) Gene diversity and female philopatry. Genetics 127:437–447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chesser RK (1991b) Influence of gene flow and breeding tactics on gene diversity within populations. Genetics 129:573–583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clutton-Brock TH (1988) Reproductive success. University of Chicago Press, Chicago

    Google Scholar 

  • Clutton-Brock TH (1989) Mammalian mating systems. Proc R Soc Lond B 236:339–372

    Article  CAS  PubMed  Google Scholar 

  • Clutton-Brock TH, Lukas D (2012) The evolution of social philopatry and dispersal in female mammals. Mol Ecol 21:472–492

    Article  CAS  PubMed  Google Scholar 

  • Coltman DW (2008) Molecular ecological approaches to studying the evolutionary impact of selective harvesting in wildlife. Mol Ecol 17:221–235

    Article  PubMed  Google Scholar 

  • Coltman DW, Pilkington JG, Pemberton JM (2003) Fine-scale genetic structure in a free-living ungulate population. Mol Ecol 12:733–742

    Article  CAS  PubMed  Google Scholar 

  • Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153:1989–2000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coulon A, Cosson J-F, Morellet N et al (2006) Dispersal is not female biased in a resource-defence mating ungulate, the European roe deer. Proc Biol Sci 273:341–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crestanello B, Pecchioli E, Vernesi C et al (2009) The genetic impact of translocations and habitat fragmentation in chamois (Rupicapra) spp. J Hered 100:691–708

    Article  CAS  PubMed  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree Argania spinosa (L) Skeels endemic to Morocco. Theor Appl Genet 92:832–839

    Article  PubMed  Google Scholar 

  • Epps CW, Wehausen JD, Roderick GK et al (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE (1994) Using allele frequencies and geographic subdivision to reconstruct gene trees within a species—molecular variance parsimony. Genetics 136:343–359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Festa-Bianchet M (1991) The social system of bighorn sheep: grouping patterns, kinship and female dominance rank. Anim Behav 42:71–82

    Article  Google Scholar 

  • Festa-Bianchet M (2008) Ovis dalli. In: IUCN red list of threatened species. Version 2011.2. www.iucnredlist.org. Accessed 25 Mar 2010

  • Festa-Bianchet M, Côté SD (2008) Mountain goats: ecology, behavior and conservation of an alpine ungulate. Island Press, Washington, D.C

    Google Scholar 

  • Forbes SH, Hogg JT (1999) Assessing population structure at high levels of differentiation: microsatellite comparisons of bighorn sheep and large carnivores. Anim Conserv 2:223–233

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests on neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garde E, Kutz S, Schwantje H, Veitch A, Jenkins E, Elkin B (2005) examining the risk of disease transmission between wild dall’s sheep and mountain goats, and introduced domestic sheep, goats, and Llamas in the Northwest territories. Wildlife disease and zoonotics. University of Nebraska, Lincoln

    Google Scholar 

  • Geist V (1971) Mountain sheep: a study in behavior and evolution. University of Chicago Press, Chicago

    Google Scholar 

  • Goudet J, Perrin N, Waser P (2002) Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol Ecol 11:1103–1114

    Article  CAS  PubMed  Google Scholar 

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Article  Google Scholar 

  • Guillot G, Estoup A, Mortier F, Cosson JF (2005) A spatial statistical model for landscape genetics. Genetics 170:1261–1280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gutiérrez-Espeleta GA, Kalinowski ST, Boyce WM, Hedrick WP (2000) Genetic variation and population structure in desert bighorn sheep: implications for conservation. Conserv Genet 1:3–15

    Article  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Proc R Soc Lond B 359:183–195

    CAS  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207

    Article  Google Scholar 

  • Johnson HE, Mills LS, Wehausen JD, Stephenson TR, Luikart G (2011) Translating effects of inbreeding depression on component vital rates to overall population growth in endangered bighorn sheep. Conserv Biol 25:1240–1249

    Article  PubMed  Google Scholar 

  • Kierepka EM, Latch EK, Swanson BJ (2012) Influence of sampling scheme on the inference of sex-biased gene flow in the American badger (Taxidea taxus). Can J Zool 90:1231–1242

    Article  Google Scholar 

  • Kutz SJ, Hoberg EP, Polley L, Jenkins EJ (2005) Global warming is changing the dynamics of Arctic host-parasite systems. Proc Biol Sci 272:2571–2576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kyle C, Strobeck C (2001) Genetic structure of North American wolverine (Gulo gulo) populations. Mol Ecol 10:337–347

    Article  CAS  PubMed  Google Scholar 

  • Landguth EL, Cushman SA, Murphy MA, Luikart G (2010) Relationships between migration rates and landscape resistance assessed using individual-based simulations. Mol Ecol Res 10:854–862

    Article  CAS  Google Scholar 

  • Larsson LC, Charlier J, Laikre L, Ryman N (2009) Statistical power for detecting divergence: organelle versus nuclear markers. Conserv Genet 10:1255–1264

    Article  Google Scholar 

  • Lawson Handley LJ, Perrin N (2007) Advances in our understanding of mammalian sex-biased dispersal. Mol Ecol 16:1559–1578

    Article  CAS  PubMed  Google Scholar 

  • Loison A, Jullien J, Menaut P (1999) Subpopulation structure and dispersal in two populations of chamois. J Mammal 80:620–632

    Article  Google Scholar 

  • Lomolino MV, Davis R (1997) Biogeographic scale and biodiversity of mountain forest mammals of western North America. Global Ecol Biogeogr 6:57–76

    Article  Google Scholar 

  • Luikart G, Allendorf FW (1996) Mitochondrial DNA variation and genetic population structure in Rocky Mountain bighorn sheep (Ovis canadensis canadensis). J Mammal 77:109–123

    Article  Google Scholar 

  • Luikart G, Pilgrim K, Visty J, Ezenwa VO, Schwartz MK (2008) Candidate gene microsatellite variation is associated with parasitism in wild bighorn sheep. Biol Lett 4:228–231

    Article  PubMed Central  PubMed  Google Scholar 

  • Luikart G, Amish SJ, Winnie J et al (2011) High connectivity among argali sheep from Afghanistan and adjacent countries: inferences from neutral and candidate gene microsatellites. Conserv Genet 12:921–931

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Maudet C, Luikart G, Dubray D, Von Hardenberg A, Taberlet P (2004) Low genotyping error rates in wild ungulate faeces sampled in winter. Mol Ecol Notes 4:772–775

    Article  CAS  Google Scholar 

  • McKelvey KS, Schwartz MK (2004) Genetic errors associated with population estimation using non-invasive molecular tagging: problems and new solutions. J Wildl Manag 68:439–448

    Article  Google Scholar 

  • McKelvey KS, Schwartz MK (2005) Dropout: a program to identify problem loci and samples for noninvasive genetic samples in a capture-mark-recapture framework. Mol Ecol Notes 5:716–718

    Article  CAS  Google Scholar 

  • Miller MP (2005) Alleles in space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724

    Article  CAS  PubMed  Google Scholar 

  • Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 3:245–261

    Google Scholar 

  • Mossman CA, Wasser PM (1999) Genetic detection of sex-biased dispersal. Mol Ecol 8:1063–1067

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nichols L, Bunnell FL (1999) Natural history of thinhorn sheep. In: Valdez R, Krausman PR (eds) Mountain sheep of North America. University of Arizona Press, Tucson, pp 23–77

    Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  CAS  PubMed  Google Scholar 

  • Palsbøll PJ, Bérubé M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pérez-Espona S, Pérez-Barbería FJ, Jiggins CD, Gordon IJ, Pemberton JM (2010) Variable extent of sex-biased dispersal in a strongly polygynous mammal. Mol Ecol 19:3101–3113

    Article  PubMed  Google Scholar 

  • Pérez-González J, Carranza J (2009) Female-biased dispersal under conditions of low male mating competition in a polygynous mammal. Mol Ecol 18:4617–4630

    Article  PubMed  Google Scholar 

  • Pidancier N, Jordan S, Luikart G, Taberlet P (2006) Evolutionary history of the genus Capra (Mammalia, Artiodactyla): discordance between mitochondrial DNA and Y-chromosome phylogenies. Mol Phylogenet Evol 40:739–749

    Article  CAS  PubMed  Google Scholar 

  • Pierson JC, Allendorf FW, Saab V, Drapeau P, Schwartz MK (2010) Do male and female black-backed woodpeckers respond differently to gaps in habitat? Evol Appl 3:263–278

    Article  PubMed Central  Google Scholar 

  • Piry S, Alapetite A, Cornuet J-M et al (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pritchard JK, Wen X, Falush D (2007) Documentation for structure software: Version 2.2. University of Chicago, Chicago, p 1

    Google Scholar 

  • Prugnolle F, De Meeüs T (2002) Inferring sex-biased dispersal from population genetic tools: a review. Heredity 88:161–165

    Article  CAS  PubMed  Google Scholar 

  • Pusey AE (1987) Sex-biased dispersal and inbreeding avoidance in birds and mammals. Trends Ecol Evol 2:295–299

    Article  CAS  PubMed  Google Scholar 

  • Ramey RR (1995) Mitochondrial DNA variation, population structure, and evolution of mountain sheep in the south-western United States and Mexico. Mol Ecol 4:429–439

    Article  CAS  PubMed  Google Scholar 

  • Rampton VN (1981) Surficial materials and landforms of Kluane National Park, Yukon Territory. Geological Survey of Canada, Paper 1979-24, Ottawa

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci 94:9197–9201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raymond M, Rousett F (1995) Genepop version 1.2: population genetics software for exact test and ecumenism. J Hered 86:248–249

    Google Scholar 

  • Schaschl H, Kaulfus D, Hammer S, Suchentrunk F (2003) Spatial patterns of mitochondrial and nuclear gene pools in chamois (Rupicapra rupicapra) from the Eastern Alps. Heredity 91:125–135

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JH, Rattenbury KL (2013) Reducing effort while improving inference: estimating Dall’s sheep abundance and composition in small areas. J Wildl Manag 77:1048–1058

    Article  Google Scholar 

  • Schwartz MK, McKelvey KS (2008) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452

    Article  Google Scholar 

  • Schwartz MK, Mills LS, McKelvey KS, Ruggiero LF, Allendorf FW (2002) DNA reveals high dispersal synchronizing the population dynamics of Canada lynx. Nature 415:520–522

    Article  CAS  PubMed  Google Scholar 

  • Shafer ABA, Côté SD, Coltman DW (2011) Hot spots of genetic diversity descended from multiple Pleistocene refugia in an Alpine ungulate. Evolution 65:125–138

    Article  PubMed  Google Scholar 

  • Sonsthagen SA, Talbot SL, White CM (2004) Gene flow and genetic characterization of northern goshawks breeding in Utah. Condor 106:826

    Article  Google Scholar 

  • Storz JF (1999) Genetic consequences of mammalian social structure. J Mammal 80:553–569

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terwilliger MLN (2005) Population and habitat analyses for Dall’ sheep (Ovis dalli dalli) in Wrangell-St. Elias National Park and Preserve. M.S. Thesis. University of Alaska, Fairbanks, Alaska

  • Valdez R, Krausman PR (1999) Mountain sheep of North America. University of Arizona Press, Tucson, p 353

    Google Scholar 

  • Walker ABD, Parker KL, Gillingham MP, Gustine DD, Lay RJ (2007) Habitat selection by female Stone’s sheep in relation to vegetation, topography, and risk of predation. Ecoscience 14:55–70

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST = 1/(4Nm + 1). J Hered 82:117–125

    Article  Google Scholar 

  • Worley K, Strobeck C, Arthur S et al (2004) Population genetic structure of North American thinhorn sheep (Ovis dalli). Mol Ecol 13:2545–2556

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 12:323–354

    Google Scholar 

  • Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17:2107–2121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Park Service, the U. S. Geological Survey, and the Murie Science and Learning Center. For assistance with fieldwork, we thank T. Cambier, H. McMahan, J. Putera, M. Reid, and R. Schwanke. We are grateful for the help of T. Bentzen, N. Cassara, T. Kavalok, T. Fauline, T. Peltier, R. Schwanke, C. Schwanke, R. Stadtmiller, and R. Tobey in collecting muscle samples. K. Scribner, E. Rominger, and J. Wehausen, provided constructive criticism of the study plan, and F. W. Allendorf, M. Hebblewhite, J. Pearce, and R. Wilson of the manuscript drafts. GL was supported by NSF-DEB grants 1067613 and 0742181. Use of trade names does not imply endorsement by the U. S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gretchen H. Roffler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roffler, G.H., Talbot, S.L., Luikart, G. et al. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates. Conserv Genet 15, 837–851 (2014). https://doi.org/10.1007/s10592-014-0583-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0583-2

Keywords

Navigation