, Volume 14, Issue 1, pp 125-144
Date: 22 Dec 2012

Effects of species biology on the historical demography of sharks and their implications for likely consequences of contemporary climate change

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Climate variation is an important factor shaping the demographic histories of many marine species, though impacts likely differ depending on species life history, habitat preferences and ecology. Investigating how species responded to historic climate fluctuations may provide critical insights into a species’ response to current climate change. Despite their ecological diversity, shark species share many similar life history characteristics and may be especially vulnerable to anthropogenic and climate impacts. We compared patterns of genetic variability, mismatch distributions and demographic reconstructions from coalescence approaches among temperate and tropical shark species with differing ecological characteristics, to investigate the effect of the past glaciation cycles on population abundance. Genetic diversity at two mitochondrial DNA regions (ND2 and control region) was assayed in four North Pacific species, Pacific spiny dogfish, Pacific sleeper sharks, salmon shark, and bluntnose sixgill shark. In addition, control region sequences acquired from GenBank for five shark species [tope shark (California/Australia), white shark (California), blacktip shark (eastern and western Gulf of Mexico), lemon shark (Bahamas), and whale shark] were analyzed. General patterns in genetic diversity, mismatch analyses and Bayesian skyline plots supported our hypothesis that species biology affected the impact of climate variation on demographic history. Consequently, our results suggest that effects of contemporary climate change on sharks may be to some degree predictable from species biology, distribution, habitat and the impact of past climate events.