, Volume 13, Issue 3, pp 717-725
Date: 22 Jan 2012

Population structure of an endangered frog (Babina subaspera) endemic to the Amami Islands: possible impacts of invasive predators on gene flow

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The otton frog (Babina subaspera) is an endangered species endemic to the Amami Islands, Japan. High predation pressure from an introduced carnivore, the mongoose, has caused declines in the frog populations and created a large habitat gap around an urban area. To promote effective conservation, we investigated the genetic status of the species and examined the effect of the habitat gap on gene flow among populations. Using five polymorphic microsatellite loci and mitochondrial DNA sequences, we investigated genetic diversity, genetic structure and gene flow in B. subaspera populations on the islands of Amami-Oshima and Kakeroma-jima. The expected heterozygosity (H E) within each locality was generally high (range: 0.67–0.85), indicating that B. subaspera maintains high genetic diversity. However, genetic differentiation was observed, and the two populations, TAG and KAR, showed little gene flow with other populations. The clustering and F ST analyses also predicted that these two populations were clearly distinct. According to the mitochondrial DNA analysis, the observed genetic differentiation occurred relatively recently. Possible barriers such as mountain ridges, rivers or roads did not result in genetic separation of the populations. These data support the hypothesis that the habitat gap created by an introduced predator prevented the gene flow among B. subaspera populations. When developing conservation strategies for B. subaspera, focus should be directed to these two isolated populations; careful monitoring of population size and genetic diversity should be conducted along with the mongoose elimination project ensues.