, Volume 13, Issue 2, pp 593-603
Date: 06 Jan 2012

Low genetic diversity and fragmentation effects in a wind-pollinated tree, Polylepis multijuga Plige (Rosaceae) in the high Andes

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Fragmentation is predicted to increase inbreeding depression and lower the evolutionary potential of organisms by disrupting dispersal. Trees may be more resilient to fragmentation effects due to potential long-distance dispersal mechanisms that genetically connect fragments. Polylepis woodlands in the high Andes are highly fragmented and are currently the focus of reforestation and conservation efforts. Polylepis multijuga Plige (Rosaceae) is a threatened, endemic tree species in the northern Andes of Peru. Samples were collected from 371 adult trees in nine forest fragments separated by 0.5–80 km and genotyped at amplified fragment length polymorphism loci (AFLP) and chloroplast intergenic regions to determine the connectedness of fragments and their suitability for collecting seed for restoration efforts. P. multijuga is wind-pollinated and dispersed; however, genetic diversity in P. multijuga was about half that reported for other wind-pollinated species. Genetic spatial autocorrelation and patterns of chloroplast and AFLP diversity suggest seed dispersal is very limited and that wind dispersed pollen does not effectively connect all fragments. Conservation of this species will require reforestation efforts and possibly augmentation of some fragments to increase their genetic diversity. Collecting seed from multiple large fragments and from individuals separated by at least 25 m within fragments would maximize the genetic diversity of seed collections for reforestation or augmentation. Future studies of this and other Polylepis species should determine how complex topography may affect wind mediated dispersal between fragments and patterns of genetic diversity.