Skip to main content

Advertisement

Log in

Microsatellite diversity and structure of Carpathian brown bears (Ursus arctos): consequences of human caused fragmentation

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The formerly large, continuous brown bear population of the Carpathians has experienced a radical decrease in population size due to human activities which have resulted in splitting the population into the larger Eastern Carpathian and the smaller Western Carpathian subpopulations. In the Western Carpathians, brown bears came close to extinction at the beginning of 1930s, but thanks to both conservation and management efforts the bear population has begun to recover. In contrast, the Eastern Carpathian subpopulation in Romania has never dropped below 800 individuals, potentially preserving the original amount of genetic variation. In this paper we present results of a genetic study of brown bear subpopulations distributed in the Slovak and Romanian sections of the Carpathians using 13 nuclear microsatellites. The documented level of genetic differentiation between the Western and Eastern Carpathian subpopulations reflects the isolation which lasted almost 100 years. Furthermore, the existence of two, different, genetic clusters within the Western Carpathians despite close geographic proximity indicates that human-caused fragmentation and isolation have resulted in significant genetic divergence. Although the subpopulations display an indication of genetic bottleneck, the level of genetic diversity is within the range commonly observed in different brown bear populations. The results presented here point out the significance of human exploitation to the population structure of this large carnivore species. Future management efforts should be aimed at securing and restoring the connectivity of forested habitats, in order to preserve the genetic variation of the Carpathian brown bear subpopulations and to support the gene flow between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams JR, Waits LP (2007) An efficient method for screening faecal DNA genotypes and detecting new individuals and hybrids in the red wolf (Canis rufus) experimental population area. Conserv Genetics 8:123–131

    Article  CAS  Google Scholar 

  • Anonymous (2007) Management and action plan for the bear population in Romania. Ministry of Agriculture, Forestry and Rural Development, Ministry of Environment and Water Management. Bucureşti, pp 1–79. Available at http://www.icas.ro/DOCS/Bear%20Management%20Plan.pdf

  • Aurelle D, Cattaneo-Berrebi G, Berrebi P (2002) Natural and artificial secondary contact in brown trout (Salmo trutta L.) in the French western Pyrenees assessed by allozymes and microsatellites. Heredity 89:171–183

    Article  PubMed  CAS  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) genetix 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier

  • Bellemain E, Taberlet P (2004) Improved noninvasive genotyping method: application to brown bear (Ursus arctos) faeces. Mol Ecol Notes 4:519–522

    Article  CAS  Google Scholar 

  • Bierne N, Borsa P, Daguin C et al (2003) Introgression patterns in the mosaic hybrid zone between Mytilus edulis and M. galloprovincialis. Mol Ecol 12:447–461

    Article  PubMed  CAS  Google Scholar 

  • Caro TM, Laurenson MK (1994) Ecological and genetic factors in conservation: a cautionary tale. Science 263:485–486

    Article  PubMed  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270

    Article  PubMed  Google Scholar 

  • Dahle B, Swenson JE (2003) Home ranges in adult Scandinavian brown bears (Ursus arctos): effect of mass, sex, reproductive category, population density and habitat type. J Zool 260:329–335

    Article  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC et al (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  PubMed  CAS  Google Scholar 

  • Ehrich D, Gaudeul M, Assefa A et al (2007) Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Mol Ecol 16:2542–2559

    Article  PubMed  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Evett I, Weir B (1998) Interpreting DNA evidence: statistical genetics for forensic scientists. Sinauer Associates, Sunderland

    Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50

    CAS  Google Scholar 

  • Finďo S, Skuban M, Koreň M (2007) Brown bear corridors in Slovakia. Identification of critical segments of the main road transportation corridors with wildlife habitats. Carpathian Wildlife Society, Zvolen, pp 1–68

    Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  PubMed  CAS  Google Scholar 

  • Glaubitz JC (2004) Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310

    Article  CAS  Google Scholar 

  • Gouin N, Grandjean F, Souty-Grosset C (2006) Population genetic structure of the endangered crayfish Austropotamobius pallipes in France based on microsatellite variation: biogeographical inferences and conservation implications. Freshw Biol 51:1369–1387

    Article  CAS  Google Scholar 

  • Hartl GB, Hell P (1994) Maintanence of high-levels of allelic variation in spite of a severe bottleneck in population size–the brown bear (Ursus arctos) in the Western Carpathians. Biodivers Conserv 3:546–554

    Article  Google Scholar 

  • Hell P, Slamečka J (1999) Bear in Slovak Carpathians and in the world [in Slovak]. PaRPRESS, Bratislava

    Google Scholar 

  • Ionescu O (1999) Status and management of the brown bear in Romania. In: Servheen C, Herrero S, Peyton B (eds) Bears: status survey and conservation action plan. International Union for the Conservation of Nature and Natural Resources, Switzerland, pp 93–96

    Google Scholar 

  • Jakubiec Z (2001) The Brown bear Ursus arctos L. in the Polish part of the Carpathians (in Polish). Polska Akademia Nauk, Instytut Ochrony Przyrody, Studia Naturae 47

  • Jiménez JA, Hughes KA, Alaks G, Graham L, Lacy RC (1994) An experimental study of inbreeding depression in a natural habitat. Science 266:271–273

    Article  PubMed  Google Scholar 

  • Jombart T, Pontier D, Dufour AB (2009) Genetic markers in the playground of multivariate analysis. Heredity 102:330–341

    Article  PubMed  CAS  Google Scholar 

  • Karamanlidis AA, Drosopoulou E, Hernando MG, Georgiadis L, Krambokoukis L, Pllaha S, Zedrosser A, Scouras Z (2010) Noninvasive genetic studies of brown bears using power poles. Eur J Wildl Res 56:693–702

    Article  Google Scholar 

  • Kocijan I, Galov A, Ćetković H, Kusak J, Gomerčić T, Huber D (2011) Genetic diversity of Dinaric brown bears (Ursus arctos) in Croatia with implications for bear conservation in Europe. Mammalian Biology, doi:10.1016/j.mambio.2010.12.003

  • Kohn M, Knauer F, Stoffella A, Schröder W, Pääbo S (1995) Conservation genetics of the European brown bear–a study using excremental PCR of nuclear and mitochondrial sequences. Mol Ecol 4:95–103

    Article  PubMed  CAS  Google Scholar 

  • Lacy RC (1993) Impacts of inbreeding in natural and captive populations of vertebrates: implications for conservation. Perspect Biol Med 36:480–496

    Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460

    Article  PubMed  CAS  Google Scholar 

  • Manoukis NC (2007) Formatomatic: a program for converting diploid allelic data between common formats for population genetic analysis. Mol Ecol Notes 7:592–593

    Article  PubMed  CAS  Google Scholar 

  • Miller CR, Joyce P, Waits LP (2002) Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160:357–366

    PubMed  Google Scholar 

  • Paetkau D, Strobeck C (1994) Microsatellite analysis of genetic variation in black bear populations. Mol Ecol 3:489–495

    Article  PubMed  CAS  Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  PubMed  CAS  Google Scholar 

  • Paetkau D, Waits LP, Craighead L, Clarkson P, Strobeck C (1998) Variation in genetic diversity across the range of North American brown bears. Conserv Biol 12:418–429

    Article  Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mole Ecol 13:55–65

    Article  CAS  Google Scholar 

  • Paszlavsky J (1918) Classis Mammalia. Fauna regni Hungariae, Mammalia. Regia Societas Scientia Naturalium Hungarica, Budapest, 43 pp

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM et al (2004) Geneclass2: a software for genetic assignment and first-generation migrant detection. J Heredity 95:536–539

    Article  CAS  Google Scholar 

  • Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genetics 6:847–859

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pritchard JK, Wen X, Falush D (2007) Documentation for structure software: Version 2.2. Avaiable at http://pritch.bsd.uchicago.edu/software/structure2_2.html

  • Ralls K, Ballou JD, Templeton A (1988) Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv Biol 2:185–193

    Article  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg NA, Pritchard JK, Weber JL et al (2002) Genetic structure of human populations. Science 298:2381–2385

    Article  PubMed  CAS  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M et al (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Laboratory Press, New York

    Google Scholar 

  • Servheen C (1990) Status and conservation of the bears of the world. International conference on bear research and management No. 2, 34 pp

  • Shaw PW, Pierce GJ, Boyle PR (1999) Subtle population structuring within a highly vagile marine invertebrate, the veined squid Loligo forbesi, demonstrated with microsatellite DNA markers. Mol Ecol 8:407–417

    Article  CAS  Google Scholar 

  • Swenson JE, Wabakken P, Sandegren F, Bjärvall A, Franzén R, Söderberg A (1995) The near extinction and recovery of brown bears in Scandinavia in relation to the bear management policies of Norway and Sweden. Wildl Biol 1:11–25

    Google Scholar 

  • Swenson JE, Dahle B, Gerstl N, Zedroser A (2000) Action plan for conservation of the brown bear in Europe. Convention on the Conservation of European wildlife and natural habitats (Bern Convention), nature and environment, Nr. 114. Council of Europe Publishing, Strasbourg

    Google Scholar 

  • Taberlet P, Bouvet J (1994) Mitochondrial DNA polymorphism, phylogeography, and conservation genetics of brown bear (Ursus arctos) in Europe. Proc R Soc Lond Ser B 255:195–200

    Article  CAS  Google Scholar 

  • Taberlet P, Luikart G (1999) Non-invasive genetic sampling and individual identification. Biol J Linn Soc 68:41–55

    Article  Google Scholar 

  • Taberlet P, Swenson JE, Sandegren F, Bjärvall A (1995) Localization of a contact zone between two highly divergent mitochondrial DNA lineages of brown bear Ursus arctos in Scandinavia. Conserv Biol 9:1255–1261

    Google Scholar 

  • Taberlet P, Camarra JJ, Griffin S et al (1997) Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Mol Ecol 6:869–876

    Article  PubMed  CAS  Google Scholar 

  • Tobiáš J (1933) Bears in Turiec region [in Slovak]. Lovec 6:4–8

    Google Scholar 

  • Valière N (2002) Gimlet: a computer program for analyzing genetic individual identification data. Mol Ecol Notes 2:377–379

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol 4:535–538

    Article  Google Scholar 

  • Waits L, Taberlet P, Swenson JE, Sandergren F, Franzén R (2000) Nuclear analysis of genetic diversity and gene flow in the Scandinavian brown bear (Ursus arctos). Mol Ecol 9:421–431

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  • Zachos FE, Otto M, Unici R, Lorenzini R, Hartl GB (2008) Evidence of a phylogeographic break in the Romanian brown bear (Ursus arctos) population from the Carpathians. Mammalian Biol 73:93–101

    Article  Google Scholar 

  • Žuffa A (1932) Game in Tatras (in Slovak). Lovec 21:1–2

    Google Scholar 

Download references

Acknowledgements

This study was supported by Slovak Research and Development Agency through financial support APVV-18-032105. Authors would like to thank to State Nature Conservancy of the Slovak Republic for providing the tissue samples of legally and accidentally killed animals and sample collectors from Slovakia and Romania for assistance with sampling. Also we would like to thank to D. Krajmerová, G. Baloghová for help with laboratory work; to D. Gömöry for advice with statistical analyses, and to L. Waits, T. Skrbinšek and P. Kaňuch for their valuable comments on the early version of this manusript. Thanks are due to Dr. E. Ritch-Krč for improving English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Paule.

Appendix 1

Appendix 1

See Table 4.

Table 4 Microsatellite loci used in this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straka, M., Paule, L., Ionescu, O. et al. Microsatellite diversity and structure of Carpathian brown bears (Ursus arctos): consequences of human caused fragmentation. Conserv Genet 13, 153–164 (2012). https://doi.org/10.1007/s10592-011-0271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0271-4

Keywords

Navigation