Skip to main content

Advertisement

Log in

Conservation genetics of a peripherally isolated population of the wood turtle (Glyptemys insculpta) in Iowa

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The North American wood turtle, Glyptemys insculpta, is a semi-aquatic species that is considered rare, threatened, or endangered over much of its range. In this study, a particularly vulnerable peripheral isolate population in Iowa has been monitored over a period of 7 years. Population census size, estimated from mark-recapture data, and age structure determined from morphology are compared with genetic variation assessed using microsatellites. For reference, the genetics and demographics of this peripheral isolate are compared to data from a more dense population nearer the core of the species range in West Virginia. Geneflow between the Iowa population and a nearby population in Minnesota also is assessed. Genetic data indicate that the Iowa population is isolated, unique, and diverse. Although the Iowa population has lower allelic richness, lower heterozygosity, and smaller genetic effective population size than does the West Virginia population, the difference is not dramatic despite its lower population size, position at the periphery of the species range, and biogeographic history. The Iowa population is not inbred, and there is no genetic signature of a recent population bottleneck. However, interpretations of recent population dynamics based on genetic data may be unduly encouraging in long-lived species such as G. insculpta. Field data suggest a nearly complete lack of recruitment in Iowa. A number of environmental and anthropogenic factors, including recent increases in summer flooding during egg incubation, may have a more negative impact on the Iowa population than on the West Virginia population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akre TSB (2002) Growth, maturity, and reproduction of the wood turtle, Clemmys insculpta (LeConte) in Virginia. Dissertation, George Mason University, Fairfax

  • Amaral M (1995) Endangered and threatened wildlife and plants; 90-day finding for a petition to list the wood turtle (Clemmys insculpta) as threatened. Propo Rules Fed Regist 60:27954–27955

    Google Scholar 

  • Amato ML, Brooks RJ, Fu J (2008) A phylogeographic analysis of populations of the wood turtle (Glyptemys insculpta) throughout its range. Mol Ecol 17:570–581

    CAS  PubMed  Google Scholar 

  • Arvisais M, Bourgeois J-C, Levesque E, Daigle C, Masse D, Jutras J (2002) Home range and movements of a wood turtle (Clemmys insculpta) population at the northern limit of its range. Can J Zool 80:402–408

    Article  Google Scholar 

  • Arvisais M, Lévesque E, Bourgeois J-C, Daigle C, Masse D, Jutras J (2004) Habitat selection by the wood turtle (Clemmys insculpta) at the northern limit of its range. Can J Zool 82:391–398

    Article  Google Scholar 

  • Brooks RJ, Shilton CM, Brown GP, Quinn NWS (1992) Body size, distribution, and reproduction in a northern population of wood turtles (Clemmys insculpta). Can J Zool 70:462–469

    Article  Google Scholar 

  • Buech RR, Nelson MD (1991) How to create wood turtle nesting areas. Minnesota Department of Natural Resources document

  • Buech RR, Hanson LG, Nelson MD (1997) Identification of wood turtle nesting areas for protection and management. In: Abbema JV (ed) Proceedings: conservation, restoration, and management of tortoises and turtles—an international conference. State University of New York, Purchase, pp 383–391

    Google Scholar 

  • Cagle FR (1939) A system of marking turtles for future identification. Copeia 1939:170–173

    Article  Google Scholar 

  • Cassel A, Tammaru T (2003) Allozyme variability in central, peripheral and isolated populations of the scare heath (Coenonympha hero: Lepidoptera, Nymphalidae): Implications for conservation. Conserv Genet 4:83–93

    Article  CAS  Google Scholar 

  • Castellano CMJ, Behler JL, Amato G (2009) Genetic diversity and population genetic structure of the wood turtle (Glyptemys insculpta) at Delaware Water Gap National Recreation Area, USA. Conserv Genet 10:1783–1788

    Article  Google Scholar 

  • Chassin-Noria O, Abreu-Grobois A, Dutton PH, Oyama K (2004) Conservation genetics of the east Pacific green turtle (Chelonia mydas) in Michoacan, Mexico. Genetics 121:195–206

    CAS  Google Scholar 

  • Christens E, Bider JR (1987) Nesting activity and hatching success of the painted turtle (Chrysemys picta marginata) in southwestern Quebec. Herpetologica 43:55–65

    Google Scholar 

  • Christiansen JL, Bailey RM (1997) The lizards and turtles of Iowa. Nongame technical series no. 3. Iowa Department of Natural Resources, Des Moines

  • Ciofi C, Milinkovitch MC, Gibbs JP, Caccone A, Powell JR (2002) Microsatellite analysis of genetic divergence among populations of giant Galápagos tortoises. Mol Ecol 11:2265–2283

    Article  CAS  PubMed  Google Scholar 

  • Congdon JD, Breitenback GL, van Loben Sels RC, Tinkle DW (1987) Reproduction and nesting ecology of snapping turtles (Chelydra serpentina) in southeastern Michigan. Herpetologica 43:39–54

    Google Scholar 

  • Cornuet JM, Luikart GL (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • COSEWIC (2008) Canadian wildlife species at risk. Committee on the Status of Endangered Wildlife in Canada. http://www.cosewic.gc.ca/eng/sct0/rpt/rpt_csar_e.cfm. Accessed 13 May 2009

  • Cristescu R, Sherwin WB, Handasyde K, Cahill V, Cooper DW (in press) Detecting bottlenecks using BOTTLENECK 1.2.02 in wild populations: the importance of microsatellite structure. Conserv Genet. doi:10.1007/s10592-009-9949-2. Published online 19 June 2009

  • Daigle C (1997) Size and characteristics of a wood turtle, Clemmys insculpta, populations in southern Québec. Can Field Nat 111:440–444

    Google Scholar 

  • Dewoody J, Nason JD, Hipkins VD (2006) Mitigating scoring errors in microsatellite data from wild populations. Mol Ecol Notes 6:951–957

    Article  CAS  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst CH (2001) Some ecological parameters of the wood turtle, Clemmys insculpta, in southeastern Pennsylvania. Chelonian Conserv Biol 4:94–99

    Google Scholar 

  • Ernst CH, Lovich JE (2009) Turtles of the United States and Canada, 2nd edn. Smithsonian Institution Press, Washington

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garber SD, Burger J (1995) A 20-yr study documenting the relationship between turtle decline and human recreation. Ecol Appl 5:1151–1162

    Article  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Gibbs JP, Shriver WG (2002) Estimating the effects of road mortality on turtle populations. Conserv Biol 16:1647–1652

    Article  Google Scholar 

  • Glaubitz JC (2004) CONVERT: a user-friendly program to reformat genotypic data for commonly used population genetic software packages. Mol Ecol 4:309–310

    Article  CAS  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet (1995)

  • Hailer F, Helander B, Folkestad AO, Ganusevich SA, Garstad S, Hauff P, Koren C, Nygard T, Volke V, Vila C, Ellegren H (2006) Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biol Lett 2:316–319

    Article  PubMed  PubMed Central  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Harding JH (1997) Amphibians and reptiles of the Great Lakes region. University of Michigan Press, Ann Arbor

    Book  Google Scholar 

  • Harding JH (2008) Wood turtles, humans, and raccoons: burning the candle at both ends. World Chelonian Trust Newsl 3:1–4

    Google Scholar 

  • Harding JH, Bloomer TJ (1979) The wood turtle (Clemmys insculpta)… a natural history. HERP Bull N Y Herpetol Soc 15:9–26

    Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski ST (2005) HP-Rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kam Y-C (1994) Effects of simulated flooding on metabolism and water balance of turtle eggs and embryos. J Herpetol 28:173–178

    Article  Google Scholar 

  • Karl TR, Melillo JM, Peterson TC (2009) Global climate change impacts in the United States. Cambridge University Press, Cambridge

    Google Scholar 

  • King TL, Julian SE (2004) Conservation of microsatellite DNA flanking sequences across 13 Emydid genera assayed with novel bog turtle (Glyptemys muhlenbergii) loci. Conserv Genet 5:719–725

    Article  Google Scholar 

  • Kolbe JJ, Janzen FJ (2002) Spatial and temporal dynamics of turtle nest predation: edge effects. Oikos 99:538–544

    Article  Google Scholar 

  • Kuehl AK, Clark WR (2002) Predator activity related to landscape features in northern Iowa. J Wildl Manage 66:1224–1234

    Article  Google Scholar 

  • Kuo CH, Janzen FJ (2004) Genetic effects of a persistent bottleneck on a natural population of ornate box turtles (Terrapene ornate). Conserv Genet 5:425–437

    Article  CAS  Google Scholar 

  • Lawton JH (1993) Range, population abundance and conservation. Trends Ecol Evol 8:409–413

    Article  CAS  PubMed  Google Scholar 

  • Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760

    Article  Google Scholar 

  • Levell JP (2000) Commercial exploitation of Blanding’s turtle, Emydoidea blandingii, and the Wood turtle, Clemmys inscuplta, for the live animal trade. Chelonian Conserv Biol 3:665–674

    Google Scholar 

  • Lorenz E, Frees KL, Schwartz DA (2001) M13-tailed primers improve the readability and usability of microsatellite analyses per formed with two different allele-sizing methods. Biotechniques 31:25–28

    Article  Google Scholar 

  • Luikart GL, Allendrof FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Belknap Press, Cambridge

    Book  Google Scholar 

  • Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  PubMed  Google Scholar 

  • Niederberger AJ, Seidel ME (1999) Ecology and status of a wood turtle (Clemmys insculpta) population in West Virginia. Chelonian Conserv Biol 3:414–418

    Google Scholar 

  • Oliver JA (1955) The natural history of North American amphibians and reptiles. D. Van Nostrand, Princeton

    Google Scholar 

  • Packard GC, Packard MJ, Benigan L (1991) Sexual differentiation, growth, and hatching success by embryonic painted turtles incubated in wet and dry environments at fluctuating temperatures. Herpetologica 47:125–132

    Google Scholar 

  • Petokas PJ, Alexander MM (1980) The nesting of Chelydra serpentina in northern New York. J Herpetol 22:470–473

    Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a program for detecting recent effective population size reductions from allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Plummer MV (1976) Some aspects of nesting success in the turtle, Trionyx muticus. Herpetolgoica 32:353–359

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragotskie RA (1959) Mortality of loggerhead turtle eggs from excessive rainfall. Ecology 40:303–305

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Reed DH, Lowe EH, Briscoe DA, Frankham R (2003) Inbreeding and extinction: effects of rate of inbreeding. Conserv Genet 4:405–410

    Article  CAS  Google Scholar 

  • Robinson C, Bider JR (1988) Nesting synchrony—a strategy to decrease predation of snapping turtle (Chelydra serpentina) nests. J Herpetol 22:470–473

    Article  Google Scholar 

  • Roze JA (1964) Pilgrim of the river. Life cycle of the Orinoco river turtle has many unusual features. Nat Hist 73:34–41

    Google Scholar 

  • Saumure RA, Bider JR (1998) Impact of agricultural development on a population of wood turtles (Clemmys insculpta) in southern Québec, Canada. Chelonian Conserv Biol 3:37–45

    Google Scholar 

  • Saumure RA, Herman TB, Titman RD (2007) Effects of haying and agricultural practices on a declining species: the North American wood turtle, Glyptemys insculpta. Biol Conserv 135:581–591

    Article  Google Scholar 

  • Schilling KE, Libra RD (2003) Increased baseflow in Iowa over the second half of the 20th century. J Am Water Resour Assoc 39:851–860

    Article  Google Scholar 

  • Schmitt T, Hewitt GM (2004) The genetic pattern of population threat and loss: a case study of butterflies. Mol Ecol 13:21–31

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin version 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Seber GAF (1982) The estimation of animal abundance and related parameters. Charles Griffin and Co, Ltd, London

    Google Scholar 

  • Skalski GT (2007) Joint estimation of migration rate and effective population size using the island model. Genetics 177:1043–1057

    Article  PubMed  PubMed Central  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Resour 8:299–301

    Article  PubMed  Google Scholar 

  • Tessier N, Paquette SR, Lapointe FJ (2005) Conservation genetics of the wood turtle (Glyptemys insculpta) in Quebec, Canada. Can J Zool 83:765–772

    Article  CAS  Google Scholar 

  • Tuttle SE, Carroll DM (2003) Home range and seasonal movements of the wood turtle (Glyptemys insculpta) in southern New Hampshire. Chelonian Conserv Biol 4:656–663

    Google Scholar 

  • Van Houtan KS, Bass OL (2007) Stormy oceans are associated with declines in sea turtle hatching. Curr Biol 17:R590–R591

    Article  PubMed  CAS  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correlating genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Vucetich JA, Waite TA (2003) Spatial patterns of demography and genetic processes across the species’ range: null hypotheses for landscape conservation genetics. Conserv Genet 4:639–645

    Article  Google Scholar 

  • Walde AD, Bider JR, Daigle L, Masse D, Bourgeois JC, Jutras J, Titman RD (2003) Ecological aspects of a wood turtle, Glyptemys insculpta, population at the northern limit of its range in Québec. Can Field Nat 117:377–388

    Article  Google Scholar 

  • Walde AD, Bider JR, Masse D, Saumure RA, Titman RD (2007) Nesting ecology and hatching success of the wood turtle, Glyptemys insculpta, in Québec. Herpetol Conserv Biol 2:49–60

    Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing with forensic material. Biotechniques 10:506–513

    CAS  PubMed  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184

    Article  Google Scholar 

  • Waples RS, Do C (2008) LDNe: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Many UNI students helped with the field and lab portions of this project, particularly A. Alsheddi, V. Bajaj, A. Cyr, J. Hammen, M. Keller, S. McNaughton, F. Silva, and the 2008 and 2009 Field Biology: Herpetology classes. Support for this project was provided by a Minnesota Herpetological Society grant (to JWT), UNI’s Intercollegiate Academic Fund (to SSD), and UNI’s Student Opportunities for Academic Research Grants (to SSD and KJM). Research was performed under Iowa collecting permit SC-648 and West Virginia collecting permit numbers 2003.207, 2004.184, 2008.079, and 2009.086. Blood samples from Minnesota turtles were kindly provided by John Moriarty, Ramsey County Park System. Animal care and handling procedures were approved by the UNI animal care and use committee. We gratefully acknowledge the assistance of Dr. David Tallmon with ONeSAMP analysis and interpretation. We thank Dr. Peter Berendzen for assistance with calculating ∆K values and Dr. James Demastes for help in the field and for Fig. 1. We thank Dr. James Demastes and two anonymous reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa A. Spradling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spradling, T.A., Tamplin, J.W., Dow, S.S. et al. Conservation genetics of a peripherally isolated population of the wood turtle (Glyptemys insculpta) in Iowa. Conserv Genet 11, 1667–1677 (2010). https://doi.org/10.1007/s10592-010-0059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0059-y

Keywords

Navigation