Conservation Genetics

, Volume 11, Issue 5, pp 1593–1605

Genetic estimates of immigration and emigration rates in relation to population density and forest patch area in Peromyscus leucopus

Original Paper

DOI: 10.1007/s10592-009-0033-8

Cite this article as:
Anderson, C.S. & Meikle, D.B. Conserv Genet (2010) 11: 1593. doi:10.1007/s10592-009-0033-8

Abstract

An emerging pattern is that population densities of generalist rodents are higher in small compared to large forest patches in fragmented landscapes. We used genetically based measures of migration between patches to test two dispersal-based hypotheses for this negative density-area relationship: (1) emigration rates from small patches should be relatively lower compared to large patches (“inhibited dispersal hypothesis”), or (2) immigration rates should be higher into small than large patches (“immigration hypothesis”). Neither hypothesis was supported using data on dispersal inferred from eight microsatellite loci for 12 populations of Peromyscus leucopus in six small (1.3–2.7 ha) and six large (8–150 ha) forest patches. Emigration rates were not lower from and immigration rates were not higher into small than large patches. In fact, contrary to both hypotheses, emigration rates were higher from populations of P. leucopus in small compared to large patches. Based on a combination of genetic and field data, we speculate that higher reproduction in smaller patches resulted in higher densities which led to higher emigration rates from those patches. Rates of reproduction (presumably driven by better habitat conditions in smaller patches), rather than dispersal, seems to drive density differences in forest patches. We conclude that smaller forest patches within an agricultural matrix act as a source of individuals, and that migration rates are fairly high among forest patches regardless of size.

Keywords

Habitat fragmentationGene flowMicrosatellite DNA markersAssignment testsWhite-footed mouse

Supplementary material

10592_2009_33_MOESM1_ESM.doc (16 kb)
Supplementary material 1 (DOCX 15 kb)

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of ZoologyMiami UniversityOxfordUSA
  2. 2.Department of Biological and Environmental SciencesCapital UniversityColumbusUSA