, Volume 8, Issue 1, pp 123-131

An efficient method for screening faecal DNA genotypes and detecting new individuals and hybrids in the red wolf (Canis rufus) experimental population area

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Previously, sequencing of mitochondrial DNA (mtDNA) from non-invasively collected faecal material (scat) has been used to help manage hybridization in the wild red wolf (Canis rufus) population. This method is limited by the maternal inheritance of mtDNA and the inability to obtain individual identification. Here, we optimize the use of nuclear DNA microsatellite markers on red wolf scat DNA to distinguish between individuals and detect hybrids. We develop a data filtering method in which scat genotypes are compared to known blood genotypes to reduce the number of PCR amplifications needed. We apply our data filtering method and the more conservative maximum likelihood ratio method (MLR) of Miller et al. (2002 Genetics 160:357–366) to a scat dataset previously screened for hybrids by sequencing of mtDNA. Using seven microsatellite loci, we obtained genotypes for 105 scats, which were matched to 17 individuals. The PCR amplification success rate was 50% and genotyping error rates ranged from 6.6% to 52.1% per locus. Our data filtering method produced comparable results to the MLR method, and decreased the time and cost of analysis by 25%. Analysis of this dataset using our data filtering method verified that no hybrid individuals were present in the Alligator River National Wildlife Refuge, North Carolina in 2000. Our results demonstrate that nuclear DNA microsatellite analysis of red wolf scats provides an efficient and accurate approach to screen for new individuals and hybrids.