Computational Optimization and Applications

, Volume 61, Issue 2, pp 489–515

Terminating evolutionary algorithms at their steady state

  • Debora Gil
  • David Roche
  • Agnés Borràs
  • Jesús Giraldo
Article

DOI: 10.1007/s10589-014-9722-4

Cite this article as:
Gil, D., Roche, D., Borràs, A. et al. Comput Optim Appl (2015) 61: 489. doi:10.1007/s10589-014-9722-4
  • 205 Downloads

Abstract

Assessing the reliability of termination conditions for evolutionary algorithms (EAs) is of prime importance. An erroneous or weak stop criterion can negatively affect both the computational effort and the final result. We introduce a statistical framework for assessing whether a termination condition is able to stop an EA at its steady state, so that its results can not be improved anymore. We use a regression model in order to determine the requirements ensuring that a measure derived from EA evolving population is related to the distance to the optimum in decision variable space. Our framework is analyzed across 24 benchmark test functions and two standard termination criteria based on function fitness value in objective function space and EA population decision variable space distribution for the differential evolution (DE) paradigm. Results validate our framework as a powerful tool for determining the capability of a measure for terminating EA and the results also identify the decision variable space distribution as the best-suited for accurately terminating DE in real-world applications.

Keywords

Evolutionary algorithms Termination condition Steady state Differential evolution 

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Debora Gil
    • 1
  • David Roche
    • 2
  • Agnés Borràs
    • 1
  • Jesús Giraldo
    • 2
  1. 1.Computer Vision Center, Department of Computer ScienceUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Laboratory of Systems Pharmacology and Bioinformatics, Institut de Neurociències and Unitat de BioestadísticaUniversitat Autònoma de BarcelonaBarcelonaSpain