Computational Optimization and Applications

, Volume 51, Issue 1, pp 259–277

Implementing the Nelder-Mead simplex algorithm with adaptive parameters

Authors

  • Fuchang Gao
    • Department of MathematicsUniversity of Idaho
    • Department of MathematicsUniversity of Michigan-Flint
Article

DOI: 10.1007/s10589-010-9329-3

Cite this article as:
Gao, F. & Han, L. Comput Optim Appl (2012) 51: 259. doi:10.1007/s10589-010-9329-3

Abstract

In this paper, we first prove that the expansion and contraction steps of the Nelder-Mead simplex algorithm possess a descent property when the objective function is uniformly convex. This property provides some new insights on why the standard Nelder-Mead algorithm becomes inefficient in high dimensions. We then propose an implementation of the Nelder-Mead method in which the expansion, contraction, and shrink parameters depend on the dimension of the optimization problem. Our numerical experiments show that the new implementation outperforms the standard Nelder-Mead method for high dimensional problems.

Keywords

Nelder-Mead methodSimplexPolytopeAdaptive parameterOptimization

Copyright information

© Springer Science+Business Media, LLC 2010