Computational Optimization and Applications

, 44:139

A general algorithm for solving Generalized Geometric Programming with nonpositive degree of difficulty

Article

DOI: 10.1007/s10589-007-9148-3

Cite this article as:
Yanjun, W., Tao, L. & Zhian, L. Comput Optim Appl (2009) 44: 139. doi:10.1007/s10589-007-9148-3

Abstract

In this paper, a general algorithm for solving Generalized Geometric Programming with nonpositive degree of difficulty is proposed. It shows that under certain assumptions the primal problem can be transformed and decomposed into several subproblems which are easy to solve, and furthermore we verify that through solving these subproblems we can obtain the optimal value and solutions of the primal problem which are global solutions. At last, some examples are given to vindicate our conclusions.

Keywords

Generalized Geometric ProgrammingDegree of difficultyDecomposition method

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Shanghai University of Finance and EconomicsShanghaiChina