, Volume 40, Issue 2, pp 191-216
Date: 09 Nov 2007

Multi-step nonlinear conjugate gradient methods for unconstrained minimization

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Conjugate gradient methods are appealing for large scale nonlinear optimization problems, because they avoid the storage of matrices. Recently, seeking fast convergence of these methods, Dai and Liao (Appl. Math. Optim. 43:87–101, 2001) proposed a conjugate gradient method based on the secant condition of quasi-Newton methods, and later Yabe and Takano (Comput. Optim. Appl. 28:203–225, 2004) proposed another conjugate gradient method based on the modified secant condition. In this paper, we make use of a multi-step secant condition given by Ford and Moghrabi (Optim. Methods Softw. 2:357–370, 1993; J. Comput. Appl. Math. 50:305–323, 1994) and propose two new conjugate gradient methods based on this condition. The methods are shown to be globally convergent under certain assumptions. Numerical results are reported.