Skip to main content

Advertisement

Log in

A d-amino acid containing peptide as a potent, noncovalent inhibitor of α5β1 integrin in human prostate cancer invasion and lung colonization

Clinical & Experimental Metastasis Aims and scope Submit manuscript

ABSTRACT

Primary tumors often give rise to disseminated tumor cells (DTC’s), which acquire full malignancy after invading distant site(s). Thus, DTC’s may be a productive target for preventing prostate cancer metastasis progression. Our prior research showed that PHSCN peptide (Ac-PHSCN-NH2) targets activated α5β1 integrin to prevent invasion and metastasis in preclinical adenocarcinoma models, and disease progression in Phase I clinical trial. Here, we report that d-stereoisomer replacement of histidine and cysteine in PHSCN produces a highly potent derivative, Ac-PhScN-NH2 (PhScN). PhScN was 27,000- to 150,000-fold more potent as an inhibitor of basement membrane invasion by DU 145 and PC-3 prostate cancer cells. A large increase in invasion–inhibitory potency occurred after covalent modification of the sulfhydryl group in PHSCN to prevent disulfide bond formation; while the potency of covalently modified PhScN was not significantly increased. Thus PhScN and PHSCN invasion inhibition occurs by a noncovalent mechanism. These peptides also displayed similar cell surface binding dissociation constants (Kd), and competed for the same site. Consistent with its increased invasion–inhibitory potency, PhScN was also a highly potent inhibitor of lung extravasation and colonization in athymic nude mice: it was several hundred- or several thousand-fold more potent than PHSCN at blocking extravasation by PC-3 or DU 145 cells, and 111,000- or 379,000-fold more potent at inhibiting lung colonization, respectively. Furthermore, systemic 5 mg/kg PhScN monotherapy was sufficient to cause complete regression of established, intramuscular DU 145 tumors. PhScN thus represents a potent new family of therapeutic agents targeting metastasis by DTC’s to prevent parallel progression in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SF:

Serum–free

FBS:

Fetal bovine serum

Bio:

Biotin

CI:

Combination index

IC50:

Concentration for 50 % inhibition

DRI:

Dose reduction index

HBSS:

Hanks buffered salt solution

DTC:

Disseminated tumor cells

ELISA:

Enzyme–linked immunoabsorbant assay

DiI:

1,1′-dilinoleyl-3,3,3′3′-tetramethylindocarbocyanine perchlorate

MAP:

Multiantigenic peptide

MAb:

Monoclonal antibody

SEM:

Standard error of mean

O.C.T.:

Optimal cutting temperature

FITC:

Fluorescein isothiocyanate

Me:

Methyl

OAc:

Acetyl

acm:

Acetamidomethyl

μg:

Microgram

ng:

Nanogram

pg:

Picogram

fg:

Femtogram

ag:

Attogram

References

  1. Bubendorf L et al (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31(5):578–583

    Google Scholar 

  2. Saitoh H et al (1984) Metastatic patterns of prostatic cancer. Correlation between sites and number of organs involved. Cancer 54(12):3078–3084

    Google Scholar 

  3. Livant DL et al (2000) Anti-invasive, antitumorigenic, and antimetastatic activities of the PHSCN sequence in prostate carcinoma. Cancer Res 60(2):309–320

    PubMed  CAS  Google Scholar 

  4. Zeng Z-Z et al (2006) Role of focal adhesion kinase and phosphatidylinositol 3′-kinase in integrin fibronectin receptor-mediated, matrix metalloproteinase-1 dependent invasion by metastatic prostate cancer cells. Cancer Res 66(16):8091–8099

    Article  PubMed  CAS  Google Scholar 

  5. Zeng Z–Z et al (2009) (alpha)5(beta)1 integrin ligand PHSRN induces invasion and (alpha)5 mRNA in endothelial cells to stimulate angiogenesis. Transl Oncol 2:8–20

    Article  PubMed Central  PubMed  Google Scholar 

  6. Donate F et al (2008) Pharmacology of the novel antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2): observation of a U-shaped dose-response curve in several preclinical models of angiogenesis and tumor growth. Clin Cancer Res 14:2137–2144

    Article  PubMed  CAS  Google Scholar 

  7. van Golen KL et al (2002) Suppression of tumor recurrence and metastasis by a combination of the PHSCN sequence and the antiangiogenic compound tetrathiomolybdate in prostate carcinoma. Neoplasia 4(5):373–379

    Article  PubMed Central  PubMed  Google Scholar 

  8. Khalili P et al (2006) A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo. Mol Can Ther 5:2271–2280

    Article  CAS  Google Scholar 

  9. Stoeltzing O et al (2003) Inhibition of integrin alpha5beta1 function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice. Int J Cancer 104:496–503

    Article  PubMed  CAS  Google Scholar 

  10. Nam JM et al (2010) Breast cancer cells in three-dimensional culture display an enhanced radioresponse after coordinate targeting of integrin alpha5beta1 and fibronectin. Cancer Res 70(13):5238–5248

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Cianfrocca ME et al (2006) Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH(2)), a beta integrin antagonist, in patients with solid tumours. Br J Cancer 94(11):1621–1626

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9(4):302–312

    Article  PubMed  CAS  Google Scholar 

  13. Stone KR et al (1978) Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21(3):274–281

    Article  PubMed  CAS  Google Scholar 

  14. Kaighn ME et al (1979) Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17(1):16–23

    PubMed  CAS  Google Scholar 

  15. Yao H et al (2010) Increased potency of the PHSCN dendrimer as an inhibitor of human prostate cancer cell invasion, extravasation, and lung colony formation. Clin Exp Metastasis 27(3):173–184

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Yao H et al (2011) The PHSCN dendrimer as a more potent inhibitor of human breast cancer cell invasion, extravasation, and lung colony formation. Breast Cancer Res Treat 125:363–375

    Article  PubMed  CAS  Google Scholar 

  17. Livant DL et al (2000) The PHSRN sequence induces extracellular matrix invasion and accelerates wound healing in obese diabetic mice. J Clin Invest 105(11):1537–1545

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Jia Y et al (2004) Integrin fibronectin receptors in matrix metalloproteinase-1-dependent invasion by breast cancer and mammary epithelial cells. Cancer Res 64(23):8674–8681

    Article  PubMed  CAS  Google Scholar 

  19. Yao H et al (2011) Role of alpha5beta1 integrin upregulation in radiation-induced invasion by human pancreatic cancer cells. Transl Oncol 4(5):282–292

    Article  PubMed Central  PubMed  Google Scholar 

  20. Peled A et al (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95(11):3289–3296

    PubMed  CAS  Google Scholar 

  21. Hulme EC (1992) Centrifugation binding assays. In: Hulme EC (ed) Receptor-Ligand Interactions: A Practical Approach. Oxford University Press, Oxford, pp 235–246

    Google Scholar 

  22. Mould AP et al (1998) Regulation of integrin function: evidence that bivalent-cation-induced conformational changes lead to the unmasking of ligand-binding sites within integrin alpha5 beta1. Biochem J 331(Pt 3):821–828

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Motulsky HJ, Neubig RR (2010) Analyzing binding data. Curr Protoc Neurosci Chapter 7: Unit 7.5

  24. Godement P et al (1987) A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development 101(4):697–713

    PubMed  CAS  Google Scholar 

  25. Molnar Z, Blakey D, Bystron I (2006) Tract-tracing in developing systems and in postmortem human material using carbocyanine dyes. In: Záborszky L, Lanciego JL, Wouterlood FG (eds) Neuroanatomical tract-tracing 3: molecules, neurons, and systems, 3rd edn. Springer Science + Business Media Inc, Boston

    Google Scholar 

  26. Collazo A, Bronner-Fraser M, Fraser SE (1993) Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration. Development 118(2):363–376

    PubMed  CAS  Google Scholar 

  27. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  28. Ren H et al (2009) Differential effect of imatinib and synergism of combination treatment with chemotherapeutic agents in malignant glioma cells. Basic Clin Pharmacol Toxicol 104(3):241–252

    Article  PubMed  CAS  Google Scholar 

  29. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22(23):3099–3108

    Article  PubMed  CAS  Google Scholar 

  30. Matthews JC (1993) Fundamentals of receptor. Enzyme and transport kinetics. CRC Press Inc, Boca Raton, pp 64–94

    Google Scholar 

  31. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  PubMed  CAS  Google Scholar 

  32. Pound CR et al (1999) Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281(17):1591–1597

    Article  PubMed  CAS  Google Scholar 

  33. Amling CL et al (2000) Long-term hazard of progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J Urol 164(1):101–105

    PubMed  CAS  Google Scholar 

  34. Thalgott M et al (2013) Detection of circulating tumor cells in different stages of prostate cancer. J Cancer Res Clin Oncol 139(5):755–763

    Article  PubMed  Google Scholar 

  35. Morgan TM et al (2009) Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin Cancer Res 15(2):677–683

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Yamada R, Kera Y (1998) d-amino acid hydrolysing enzymes. EXS 85:145–155

    PubMed  CAS  Google Scholar 

  37. Clevers H (2004) At the crossroads of inflammation and cancer. Cell 118(6):671–674

    Article  PubMed  CAS  Google Scholar 

  38. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Scherer RL, McIntyre JO, Matrisian LM (2008) Imaging matrix metalloproteinases in cancer. Cancer Metastasis Rev 27(4):679–690

    Article  PubMed  Google Scholar 

  40. Annedi SC et al (2006) Engineering d-amino acid containing novel protease inhibitors using catalytic site architecture. Bioorg Med Chem 14(1):214–236

    Article  PubMed  CAS  Google Scholar 

  41. Friedrich R et al (2008) Structure of a novel thrombin inhibitor with an uncharged D-amino acid as P1 residue. Eur J Med Chem 43(6):1330–1335

    Article  PubMed  CAS  Google Scholar 

  42. Wang J, Rabenstein DL (2006) Interaction of heparin with two synthetic peptides that neutralize the anticoagulant activity of heparin. Biochemistry 45(51):15740–15747

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Welch BD et al (2007) Potent D-peptide inhibitors of HIV-1 entry. Proc Natl Acad Sci USA 104(43):16828–16833

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Sroka TC, Pennington ME, Cress AE (2006) Synthetic d-amino acid peptide inhibits tumor cell motility on laminin-5. Carcinogenesis 27(9):1748–1757

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. David Ballou and Dr. Eric Carter in the Department of Biological Chemistry, University of Michigan for helpful suggestions in the development and analysis of the binding assays and data. We also wish to thank Dr. Ted Lawrence, Dr. Daniel Hamstra and Dr. Yi Sun in the Department of Radiation Oncology, University of Michigan for providing thoughtful insight to the preparation of this manuscript. This research was supported by the National Institutes of Health, R01 CA119007, “PHSCN Therapies to Prevent Prostate Cancer Progression”, with fiscal assistance from the Office of Technology Transfer, University of Michigan Medical School Office of Research, Ann Arbor, Michigan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna L. Livant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veine, D.M., Yao, H., Stafford, D.R. et al. A d-amino acid containing peptide as a potent, noncovalent inhibitor of α5β1 integrin in human prostate cancer invasion and lung colonization. Clin Exp Metastasis 31, 379–393 (2014). https://doi.org/10.1007/s10585-013-9634-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-013-9634-1

Keywords

Navigation