Skip to main content

Advertisement

Log in

Projections of climate change effects on discharge and inundation in the Amazon basin

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Climate change and its effects on the hydrologic regime of the Amazon basin can impact biogeochemical processes, transportation, flood vulnerability, fisheries and hydropower generation. We examined projections of climate change on discharge and inundation extent in the Amazon basin using the regional hydrological model MGB-IPH with 1-dimensional river hydraulic and water storage simulation in floodplains. Future projections (2070–2099) were obtained from five GCMs from IPCC’s Fifth Assessment Report CMIP5. Climate projections have uncertainty and results from different climate models did not agree in total Amazon flooded area or discharge anomalies along the main stem river. Overall, model runs agree better with wetter (drier) conditions over western (eastern) Amazon. Results indicate that increased mean and maximum river discharge for large rivers draining the Andes in the northwest contributes to increased mean and maximum discharge and inundation extent over Peruvian floodplains and Solimões River (annual mean-max: +9 % - +18.3 %) in western Amazonia. Decreased river discharges (mostly dry season) are projected for eastern basins, and decreased inundation extent at low water (annual min) in the central (−15.9 %) and lower Amazon (−4.4 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abril G, Martinez J-M, Artigas F, et al. (2014) Amazon River carbon dioxide outgassing fuelled by wetlands. Nature. doi:10.1038/nature12797

    Google Scholar 

  • Alves LM, Marengo J (2010) Assessment of regional seasonal predictability using the PRECIS regional climate modeling system over South America. Theor Appl Climatol. doi:10.1007/s00704-009-0165-2

    Google Scholar 

  • Beighley RE, Eggert K, Dunne T, et al. (2009) Simulating hydrologic and hydraulic processes throughout the Amazon River basin. Hydrol Process. doi:10.1002/hyp.7252

    Google Scholar 

  • Betts AK, Fisch G, Von Randow C, et al. (2009) The Amazonian boundary layer and mesoscale circulations. In: Keller M et al. (eds) Amazonia and global change. Geophysical monograph, vol 186. AGU:Washington, D. C.. doi:10.1029/2008GM000720

  • Boisier JP, Ciais P, Ducharne A, Guimberteau M (2015) Projected strengthening of Amazonian dry season by constrained climate model simulations. Nat Clim Chang. doi:10.1038/NCLIMATE2658

    Google Scholar 

  • Bourgoin LM, Bonnet M-P, Martinez J-M, et al. (2007) Temporal dynamics of water and sediment exchanges between the Curuaí floodplain and the Amazon River, Brazil. J Hydrol. doi:10.1016/j.jhydrol.2006.11.023

    Google Scholar 

  • Casimiro WSL, Labat D, Guyot JL, Ardoin-Bardin S (2011) Assessment of climate change impacts on the hydrology of the Peruvian Amazon–Andes basin. Hydrol Process. doi:10.1002/hyp.8097

    Google Scholar 

  • Chou SC, Marengo JA, Lyra AA, et al. (2012) Downscaling of South America present climate driven by 4-member HadCM3 runs. Clim Dyn. doi:10.1007/s00382-011-1002-8

    Google Scholar 

  • Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett. doi:10.1029/2008GL035694

    Google Scholar 

  • Christensen JH, Krishna Kumar K, Aldrian E, et al. (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF et al. (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Coe M, Costa M, Botta A, Birkett C (2002) Long-term simulations of discharge and floods in the Amazon Basin. J Geophys Res-Atmos. doi:10.1029/2001JD000740

    Google Scholar 

  • Coe MT, Costa MH, Howard EA (2007) Simulating the surface waters of the Amazon River basin: impacts of new river geomorphic and flow parameterizations. Hydrol Process. doi:10.1002/hyp.6850

    Google Scholar 

  • Coe MT, Costa MH, Soares-Filho BS (2009) The influence of historical and potential future deforestation on the stream flow of the Amazon River – Land surface processes and atmospheric feedbacks. J Hydrol. doi:10.1016/j.jhydrol.2009.02.043

    Google Scholar 

  • Coe MT, Marthews TR, Costa MH, et al. (2013) Deforestation and climate feedbacks threaten the ecological integrity of south-southeastern Amazonia. Philos Trans R Soc Lond Ser B Biol Sci. doi:10.1098/rstb.2012.0155

    Google Scholar 

  • Cook B, Zeng N, Yoon J-H (2012) Will Amazonia dry out? Magnitude and causes of change from IPCC climate model projections. Earth Interact. doi:10.1175/2011EI398.1

    Google Scholar 

  • Costa MH, Foley JA (1997) Water balance of the Amazon Basin: dependence on vegetation cover and canopy conductance. J Geophys Res 102(D20):23973–23989

    Article  Google Scholar 

  • Costa MH, Botta A, Cardille JA (2003) Effects of large-scale changes in landcover on the discharge of the Tocantins River, Southeastern Amazonia. J Hydrol. doi:10.1016/S0022-1694(03)00

    Google Scholar 

  • Costa MH, Coe MT, Guyot J-L (2009) Effects of climatic variability and deforestation on surface water regimes. In: Keller M et al. (eds) Amazonia and global change, Geophysical Monograph, vol 186. AGU, Washington, D. C., pp. 543–553. doi:10.1029/2008GM000721

    Chapter  Google Scholar 

  • Davidson E, de Araújo AC, Artaxo P, et al. (2012) The Amazon basin in transition. Nature. doi:10.1038/nature10717

    Google Scholar 

  • Decharme B, Douville H, Prigent C, et al. (2008) A new river flooding scheme for global climate applications: off-line evaluation over South America. J Geophys Res-Atmos. doi:10.1029/2007JD009376

    Google Scholar 

  • Dias LPC, Macedo MN, Costa MH, et al. (2015) Effects of landcover change on evapotranspiration and streamflow of small catchments in the upper Xingu River basin, Central Brazil. Journal of Hydrology: Regional Studies. doi:10.1016/j.ejrh.2015.05.010

    Google Scholar 

  • Dunne T, Meade RH, Richey JE, Forsberg BR (1998) Exchanges of sediment between the floodplain and channel of the Amazon River in Brazil. GSA Bull 110(4):450–467

    Article  Google Scholar 

  • EPE (2012) Balanço energético nacional 2012: ano base 2011. Empresa de Pesquisa Energética (Brasil), Rio de Janeiro, p. 282

    Google Scholar 

  • Espinoza JC, Guyot JL, Ronchail J, et al. (2009a) Contrasting regional discharge evolutions in the Amazon basin (1974–2004). J Hydrol. doi:10.1016/j.jhydrol.2009.03.004

    Google Scholar 

  • Espinoza JC, Ronchail J, Guyot JL, et al. (2009b) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol. doi:10.1002/joc

    Google Scholar 

  • Espinoza JC, Chavez S, Ronchail J, et al. (2015) Rainfall hotspots over the southern tropical Andes: spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour Res. doi:10.1002/2014WR016273

    Google Scholar 

  • Ferreira-Ferreira J, Silva TSF, Streher AS, et al. (2014) Combining ALOS/PALSAR derived vegetation structure and inundation patterns to characterize major vegetation types in the Mamirauá Sustainable Development Reserve, Central Amazon floodplain, Brazil. Wetl Ecol Manag. doi:10.1007/s11273-014-9359-1

    Google Scholar 

  • Foley JA, Botta A, Coe MT, Costa MH (2002) El Niño-Southern oscillation and the climate, ecosystems and rivers of Amazonia. Glob Biogeochem Cycles. doi:10.1029/2002GB001872

    Google Scholar 

  • Garreaud R, Vuille M, Clement A (2003) The climate of the Altiplano: observed current conditions and mechanism of past changes. Palaeogeogr Palaeoclimatol Palaeoecol. doi:10.1016/S0031-0182(03)00269-4

    Google Scholar 

  • Gloor M, Brienen RJW, Galbraith D, et al. (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett. doi:10.1002/grl.50377

    Google Scholar 

  • Guimberteau M, Drapeau G, Ronchail J, et al. (2012) Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets. Hydrol Earth Syst Sci. doi:10.5194/hess-16-911-201w

    Google Scholar 

  • Guimberteau M, Ronchail J, Espinoza JC, et al. (2013) Future changes in precipitation and impacts on extreme streamflow over Amazonian sub-basins. Environ Res Lett. doi:10.1088/1748-9326/8/1/014035

    Google Scholar 

  • Hess LL, Affonso AG, Barbosa C, et al. (2015) Amazonian wetlands: extent, vegetative cover, and dual season inundation area. Wetlands. doi:10.1007/s13157-015-0666-y

    Google Scholar 

  • Joetzjer E, Douville H, Delire C, Ciais P (2013) Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Clim Dyn. doi:10.1007/s00382-012-1644-1

    Google Scholar 

  • Jones C, Carvalho LMV (2013) Climate change in the South American monsoon system: present climate and CMIP5 projections. J Clim. doi:10.1175/JCLI-D-12-00412.1

    Google Scholar 

  • Junk W (1997) General aspects of floodplain ecology with special reference to Amazonian floodplains. In: Junk W (ed) The central Amazon floodplain, ecological studies, vol Volume 126. Springer, Berlin. doi:10.1007/978-3-662-03416-3_1

    Chapter  Google Scholar 

  • Junk W, Bayley PB, Sparks RE (1989) The floodpulse concept in River-Floodplain Systems. In: proceeding of the international large River symposium. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  • Junk W, Soares MG, Bayley PB (2007) Freshwater fishes of the Amazon River basin: their biodiversity, fisheries, and habitats. Aquat Ecosyst Health Manag. doi:10.1080/14634980701351023

    Google Scholar 

  • Junk W, Piedade MTF, Wittmann F, et al. (2011) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management 210. Springer Netherlands, London. doi:10.1007/978-90-481-8725-6

    Book  Google Scholar 

  • Langerwisch F, Rost S, Gerten D, et al. (2013) Potential effects of climate change on inundation patterns in the Amazon Basin. Hydrol Earth Syst Sci. doi:10.5194/hess-17-2247-2013

    Google Scholar 

  • Lejeune Q, Davin EL, Guillod BP, Seneviratne SI (2015) Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Clim Dyn. doi:10.1007/s00382-014-2203-8

    Google Scholar 

  • Lobón-Cervia J, Hess LL, Melack JM, et al. (2015) The association between forest cover and fish abundance on the Amazon floodplain. Hydrobiologia 250:245–255

    Article  Google Scholar 

  • Malhi Y, Roberts JT, Betts RA, et al. (2008) Climate change, Deforestation and the fate of the Amazon. Science. doi:10.1126/science.1146961

    Google Scholar 

  • Marengo JA, Espinoza JC (2015) Review: extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int J Climatol. doi:10.1002/joc.4420

    Google Scholar 

  • Marengo J, Nobre CA, Betts RA, Cox PM, Sampaio G, and Salazar L (2009) Global warming and climate change in Amazonia: climate-vegetation feedback and impacts on water resources In: Keller M, Bustamante M, Gash J, Silva Dias P (eds) Amazonia and global change. American Geophysical Union, Washington, D. C. doi:10.1029/2008GM000744

  • Marengo JA, Liebmann B, Grimm AM, et al. (2012) Recent developments on the South American monsoon system. Int J Climatol. doi:10.1002/joc.2254

    Google Scholar 

  • Meade RH (1991) Backwater effects in the Amazon River Basin of Brazil. Environ Geol Water Sci 18(2):105–114

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, et al. (2007) Global climate projections in climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S et al. (eds) . Cambridge University Press, Cambridge

    Google Scholar 

  • Melack JM (2015) Aquatic ecosystems. In L. Nagy B. Forsberg, Artaxo P (eds) The large-scale biosphere atmosphere programme in Amazonia. Ecological Studies, Springer

  • Melack JM, Coe MT (2013) Climate change and the Floodplain Lakes of the Amazon Basin. In: Goldman CR, Kumagai M, Robarts RD (eds) Climatic change and global warming of inland waters: impacts and mitigation for ecosystems and societies. Wiley, Chichester. doi:10.1002/9781118470596.ch17

    Google Scholar 

  • Melack JM, Hess LL (2010) Remote sensing of the distribution and extent of wetlands in the Amazon Basin. In: Junk WJ et al. (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management, 210. Springer Netherlands, Dordrecht, pp. 43–59

    Chapter  Google Scholar 

  • Melack JM, Hess LL, Gastil M, et al. (2004) Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Glob Chang Biol. doi:10.1111/j.1529-8817.2003.00763.x

    Google Scholar 

  • Melack JM, Novo EMLM, Forsberg BR, et al. (2009) Floodplain ecosystem processes. In: Keller M et al. (eds) Amazonia and global change. AGU, Washington, D. C. doi:10.1029/2008GM000744

    Google Scholar 

  • Milly P, Dunne K, Vecchia A (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature. doi:10.1038/nature04312

    Google Scholar 

  • Minvielle M, Garreaud RD (2011) Projecting rainfall changes over the South American altiplano. J Clim. doi:10.1175/JCLI-D-11-00051.1

    Google Scholar 

  • Moreira-Turcq P, Jouanneau JM, Turcq B, et al. (2004) Carbon sedimentation at Lago Grande de Curuai, a floodplain lake in the low Amazon region: insights into sedimentation rates. Palaeogeogr Palaeoclimatol Palaeoecol 214:27–40

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, et al. (2010) The next generation of scenarios for climate change research and assessment. Nature. doi:10.1038/nature08823

    Google Scholar 

  • Neukom R, Rohrer M, Calanca P, et al. (2015) Facing unprecedented drying of the Central Andes? precipitation variability over the period AD 1000–2100. Environ Res Lett. doi:10.1088/1748-9326/10/8/084017

    Google Scholar 

  • Nobre CA, Obregón GO, Marengo JA, et al. (2009) Characteristics of Amazonian climate: main features. In: Keller M et al. (eds) Amazonia and global change. AGU, Washington, D. C. doi:10.1029/2009GM000903

    Google Scholar 

  • Nohara D, Kitoh A, Hosaka M, Oki T (2006) Impact of climate change on river discharge projected by multimodel ensemble. J Hydrometeorol. doi:10.1175/JHM531.1

    Google Scholar 

  • Paiva RCD, Collischonn W, Tucci CEM (2011) Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. J Hydrol. doi:10.1016/j.jhydrol.2011.06.007

    Google Scholar 

  • Paiva RCD, Buarque DC, Collischonn W, et al. (2013) Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resour Res. doi:10.1002/wrcr.20067

    Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, et al. (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature. doi:10.1038/416617a

    Google Scholar 

  • Rudorff CM, Melack JM, Bates PD (2014) Flooding dynamics on the lower Amazon floodplain: 2. Seasonal and interannual hydrological variability. Water Resour Res. doi:10.1002/2013WR014714

    Google Scholar 

  • Sampaio G, Nobre C, Costa MH, et al. (2007) Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys Res Lett. doi:10.1029/2007GL030612

    Google Scholar 

  • Seth A, Thibeault J, Garcia M, Valdivia C (2010) Making sense of twenty-first-century climate change in the Altiplano: observed trends and CMIP3 projections. Ann Assoc Am Geogr 100:835–847

    Article  Google Scholar 

  • Solman SA, Sanchez E, Samuelsson P, et al. (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-interim reanalysis: model performance and uncertainties. Clim Dyn. doi:10.1007/s00382-013-1667-2

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the Experiment Design. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-11-00094.1

    Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 12–29. doi:10.1016/j.jhydrol.2012.05.052

  • Thibeault JM, Seth A, Garcia M (2010) Changing climate in the Bolivian altiplano: CMIP3 projections for temperature and precipitation extremes. J Geophys Res. doi:10.1029/2009JD012718

    Google Scholar 

  • Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res. doi:10.1029/2008JD011021

    Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences. In: International geophysics series, Vol. 91, 2d edn. Academic Press, Amsterdam, p. 627

    Google Scholar 

  • Yamazaki D, Kanae S, Kim H, Oki T (2011) A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour Res. doi:10.1029/2010WR009726

    Google Scholar 

  • Yamazaki D, Lee H, Alsdorf D, et al. (2012) Analysis of the water level dynamics simulated by a global river model: A case study in the Amazon River. Water Resour Res. doi:10.1029/2012WR011869

    Google Scholar 

  • Zulkafli Z, Buytaert W, Manz B, et al. (2016) Projected increases in the annual flood pulse of the Western Amazon. Environ Res Lett. doi:10.1088/1748-9326/11/1/014013

    Google Scholar 

Download references

Acknowledgments

The synthetic work for this paper was supported by the Science for Nature and People (SNAP) sponsored by the National Center for Ecological Analysis and Synthesis (NCEAS), Wildlife Conservation Society (WCS) and the Nature Conservancy (TNC). SNAP funding was provided by the David and Lucile Packard Foundation (Grant # 2013-38757 & #2014-39828), Ward Woods (Grant # 309519), WCS and TNC. Also we thank the editor and reviewers for comments that improved this paper andWalter Collischonn for advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mino Viana Sorribas.

Electronic supplementary material

ESM 1

(PDF 2.41 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorribas, M.V., Paiva, R.C.D., Melack, J.M. et al. Projections of climate change effects on discharge and inundation in the Amazon basin. Climatic Change 136, 555–570 (2016). https://doi.org/10.1007/s10584-016-1640-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-016-1640-2

Keywords

Navigation