Skip to main content
Log in

Mapping current and future potential snakebite risk in the new world

Climatic Change Aims and scope Submit manuscript

Abstract

Snakebite envenoming is an important public health concern worldwide. In the Americas, ~300,000 bites occur annually, leaving 84,110–140,981 envenomings and 652–3466 deaths. Here, we modeled current and future snakebite risk using ecological niche models (ENMs) of 90 venomous snake taxa. Current snakebite risk predictions were corroborated by incidence data from eight regions/periods with different characteristics. Detailed projections of potential future range shifts on distributions of the medically most relevant species indicated that North American species’ ranges are likely to increase in the future, but mixed results were obtained for Latin American snakes. A likely expansion of overall risk area and an increase of rural population at risk were observed from a consensus model among future scenarios. Our study highlights the capacity of ENMs to provide detailed information on current and future potential distributions of venomous snakes, as well as useful perspectives on snakebite risk, at least broad scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  Google Scholar 

  • Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539

    Article  Google Scholar 

  • Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728

    Article  Google Scholar 

  • Barbosa AM, Brown JA, Real R (2014) modEvA – an R package for model evaluation and analysis. R package, version 0.1. http://www.r-project.org/cran

  • Barve N (2008) Tool for Partial-ROC, ver 1.0. Biodiversity Institute, Lawrence, KS

  • Barve N, Barve V (2013) ENMGadgets: tools for pre and post processing in ENM workflows; https://github.com/vijaybarve/ENMGadgets

  • Barve N et al. (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222:1810–1819

    Article  Google Scholar 

  • Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77

    Article  Google Scholar 

  • Campbell JA, Lamar WW (2004) The venomous reptiles of the western hemisphere. Cornell University Press, Ithaca

    Google Scholar 

  • Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT (2015) Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos Trans R Soc B 370:20140135

    Article  Google Scholar 

  • Center for International Earth Science Information Network (CIESIN), Columbia University; United Nations Food and Agriculture Programme (FAO); and Centro Internacional de Agricultura Tropical (CIAT) (2005) Gridded Population of the World: Future Estimates (GPWFE). Palisades, NY: Socioeconomic Data and Applications Center (SEDAC), Columbia University. http://sedac.ciesin.columbia.edu/gpw

  • Chippaux JP (2008) Estimating the global burden of snakebite can help to improve management. PLoS Med 5:e221

    Article  Google Scholar 

  • Chippaux JP (2012) Epidemiology of snakebites in Europe: a systematic review of the literature. Toxicon 59:86–99

    Article  Google Scholar 

  • Cruz LS, Vargas R, Lopes AA (2009) Snakebite envenomation and death in the developing world. Ethn Dis 19:42

    Google Scholar 

  • da Fonseca GA et al. (2000) Following Africa’s lead in setting priorities. Nature 405:393–394

    Article  Google Scholar 

  • Diniz-Filho JAF, Mauricio Bini L, Fernando Rangel T, Loyola RD, Hof C, Nogués-Bravo D, Araújo MB (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Ellis, E.C., K.K. Goldewijk, S. Siebert, D. Lightman, and N. Ramankutty (2013) Anthropogenic Biomes of the World, Version 2, 2000. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/anthromes-anthropogenic-biomes-world-v2-2000

  • Feeley KJ, Silman MR (2011) The data void in modeling current and future distributions of tropical species. Glob Chang Biol 17:626–630

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Gutiérrez JM, Williams D, Fan HW, Warrell DA (2010) Snakebite envenoming from a global perspective: towards an integrated approach. Toxicon 56:1223–1235

    Article  Google Scholar 

  • Hansson E, Cuadra S, Oudin A, de Jong K, Stroh E, Torén K, Albin M (2010) Mapping snakebite epidemiology in Nicaragua-pitfalls and possible solutions. PLoS Negl Trop Dis 4:e896

    Article  Google Scholar 

  • Hansson E, Sasa M, Mattisson K, Robles A, Gutiérrez JM (2013) Using geographical information systems to identify populations in need of improved accessibility to antivenom treatment for snakebite envenoming in Costa Rica. PLoS Negl Trop Dis 7:e2009

    Article  Google Scholar 

  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Chang Biol 12:450–455

    Article  Google Scholar 

  • Hijmans RJ, Van Etten J (2010) raster: geographic analysis and modeling with raster data - R package version 1.3–11. http://www.r-project.org/cran

  • Hijmans RJ, Guarino L, Bussink C, Mathur P, Cruz M, Barrantes I, Rojas E (2004) DIVA-GIS, version 4: geographic information system for the analysis of biodiversity data. Manual. http://www.diva-gis.org

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hijmans RJ, Phillips SJ, Leathwick J, Elith J (2011) dismo: species distribution modeling - R package version 0.7–17. http://www.r-project.org/cran

  • Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Álvarez-Pérez HJ, Garland T (2009) Why tropical forest lizards are vulnerable to climate warming. Proc R Soc B 276:1939–1948

    Article  Google Scholar 

  • Kasturiratne A et al. (2008) The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med 5:1591–1604

    Article  Google Scholar 

  • Küper W, Sommer J, Lovett J, Barthlott W (2006) Deficiency in African plant distribution data–missing pieces of the puzzle. Bot J Linn Soc 150:355–368

    Article  Google Scholar 

  • Leynaud GC, Reati GJ (2009) Identifying areas of high risk for ophidism in Cordoba, Argentina, using SIGEpi software. Rev Panam Salud Publica 26:64–69

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2007) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Martínez-Meyer E, Díaz-Porras DF, Peterson AT, Yañez-Arenas C (2013) Ecological niche structure and rangewide abundance patterns of species. Biol Lett 9:20120637

    Article  Google Scholar 

  • Moreno-Rueda G, Pleguezuelos JM, Pizarro M, Montori A (2012) Northward shifts of the distributions of Spanish reptiles in association with climate change. Conserv Biol 26:278–283

    Article  Google Scholar 

  • Nori J, Carrasco PA, Leynaud GC (2014) Venomous snakes and climate change: ophidism as a dynamic problem. Clim Chang 122:67–80

    Article  Google Scholar 

  • O’Neil ME, Mack KA, Gilchrist J, Wozniak EJ (2007) Snakebite injuries treated in United States emergency departments, 2001–2004. Wilderness Environ Med 18:281–287

    Article  Google Scholar 

  • Owens HL, Campbell LP, Dornak LL, Saupe EE, Barve N, Soberón J, Peterson AT (2013) Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol Model 263:10–18

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  Google Scholar 

  • Parrish HM (1966) Incidence of treated snakebites in the United States. Public Health Rep 81:269–276

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Peterson AT, Ortega-Huerta MA, Bartley J, Sánchez-Cordero V, Soberón J, Buddemeier RH, Stockwell D (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629

    Article  Google Scholar 

  • Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecol Model 213:63–72

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Platts PJ, Garcia RA, Hof C, Foden W, Hansen LA, Rahbek C, Burgess ND (2014) Conservation implications of omitting narrow-ranging taxa from species distribution models, now and in the future. Divers Distrib 20:1307–1320

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. Version 2.15.1. http://cran.R-project.org. R Foundation for Statistical Computing, Vienna

  • Sokal RR, Rohlf FJ (1995) Biometry. W. H. Freeman

  • Stock RP, Massougbodji A, Alagón A, Chippaux JP (2007) Bringing antivenoms to sub-Saharan Africa. Nat Biotechnol 25:173–177

    Article  Google Scholar 

  • Stockwell D, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Model 148:1–13

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. B Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Thomas CD et al. (2004) Extinction risk from climate change. Nature 427:145–148

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci U S A 102:8245–8250

    Article  Google Scholar 

  • Tingley MW, Koo MS, Moritz C, Rush AC, Beissinger SR (2012) The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Glob Chang Biol 18:3279–3290

    Article  Google Scholar 

  • Warrell D (2010) Snake bite. Lancet 375:77–88

    Article  Google Scholar 

  • Warren DL (2012) In defense of ‘niche modeling’. Trends Ecol Evol 27:497–500

    Article  Google Scholar 

  • WHO (2009) Neglected tropical diseases: snakebite. http://www.who.int/neglected_diseases/diseases/snakebites/en/index.html. Accessed 15 April 2014

  • Williams D, Gutiérrez JM, Harrison R, Warrell DA, White J, Winkel KD, Gopalakrishnakone P (2010) The global snake bite initiative: an antidote for snake bite. Lancet 375:89–91

    Article  Google Scholar 

  • WWF (2006) Conservation Science Ecoregions. http://www.worldwildlife.org/science/ecoregions. Accessed 21 July 2014

  • Yañez-Arenas C, Peterson AT, Mokondoko P, Rojas-Soto O, Martínez-Meyer E (2014) The use of ecological niche modeling to infer potential risk areas of snakebite in the Mexican state of Veracruz. PLoS One 9:e100957

    Article  Google Scholar 

Download references

Acknowledgments

We thank CONACYT for support the postdoctoral studies of Carlos Yañez-Arenas at the University of Kansas. Andrés Lira, Rafe Brown, Lindsay Campbell, Jorge Soberón, Enrique Martínez-Meyer, and Abdallah Samy provided valuable comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Yañez-Arenas.

Electronic supplementary material

ESM 1

(PDF 228 kb)

ESM 2

(PDF 951 kb)

ESM 3

(PDF 548 kb)

ESM 4

(PDF 690 kb)

ESM 5

(PDF 13803 kb)

ESM 6

(PDF 518 kb)

ESM 7

(PDF 558 kb)

ESM 8

(PDF 212 kb)

ESM 9

(PDF 443 kb)

ESM 10

(PDF 384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yañez-Arenas, C., Townsend Peterson, A., Rodríguez-Medina, K. et al. Mapping current and future potential snakebite risk in the new world. Climatic Change 134, 697–711 (2016). https://doi.org/10.1007/s10584-015-1544-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-015-1544-6

Keywords

Navigation