Climatic Change

, Volume 111, Issue 3, pp 859–877

Direct and semi-direct radiative effects of anthropogenic aerosols in the Western United States: Seasonal and geographical variations according to regional climate characteristics

  • Jinwon Kim
  • Yu Gu
  • Kuo-Nan Liou
  • Rokjin J. Park
  • Chang-Keun Song
Article

DOI: 10.1007/s10584-011-0169-7

Cite this article as:
Kim, J., Gu, Y., Liou, KN. et al. Climatic Change (2012) 111: 859. doi:10.1007/s10584-011-0169-7

Abstract

The direct and semi-direct radiative effects of anthropogenic aerosols on the radiative transfer and cloud fields in the Western United States (WUS) according to seasonal aerosol optical depth (AOD) and regional climate are examined using a regional climate model (RCM) in conjunction with the aerosol fields from a GEOS-Chem chemical-transport model (CTM) simulation. The two radiative effects cannot be separated within the experimental design in this study, thus the combined direct- and semi-direct effects are called radiative effects hereafter. The CTM shows that the AOD associated with the anthropogenic aerosols is chiefly due to sulfates with minor contributions from black carbon (BC) and that the AOD of the anthropogenic aerosol varies according to local emissions and the seasonal low-level winds. The RCM-simulated anthropogenic aerosol radiative effects vary according to the characteristics of regional climate, in addition to the AOD. The effects on the top of the atmosphere (TOA) outgoing shortwave radiation (OSRT) range from −0.2 Wm−2 to −1 Wm−2. In Northwestern US (NWUS), the maximum and minimum impact of anthropogenic aerosols on OSRT occurs in summer and winter, respectively, following the seasonal AOD. In Arizona-New Mexico (AZNM), the effect of anthropogenic sulfates on OSRT shows a bimodal distribution with winter/summer minima and spring/fall maxima, while the effect of anthropogenic BC shows a single peak in summer. The anthropogenic aerosols affect surface insolation range from −0.6 Wm−2 to −2.4 Wm−2, with similar variations found for the effects on OSRT except that the radiative effects of anthropogenic BC over AZNM show a bimodal distribution with spring/fall maxima and summer/winter minima. The radiative effects of anthropogenic sulfates on TOA outgoing longwave radiation (OLR) and the surface downward longwave radiation (DLRS) are notable only in summer and are characterized by strong geographical contrasts; the summer OLR in NWUS (AZNM) is reduced (enhanced) by 0.52 Wm−2 (1.14 Wm−2). The anthropogenic sulfates enhance (reduce) summer DLRS by 0.2 Wm−2 (0.65 Wm−2) in NWUS (AZNM). The anthropogenic BC affect DLRS noticeably only in AZNM during summer. The anthropogenic aerosols affect the cloud water path (CWP) and the radiative transfer noticeably only in summer when convective clouds are dominant. Primarily shortwave-reflecting anthropogenic sulfates decrease and increase CWP in AZNM and NWUS, respectively, however, the shortwave-absorbing anthropogenic BC reduces CWP in both regions. Due to strong feedback via convective clouds, the radiative effects of anthropogenic aerosols on the summer radiation field are more closely correlated with the changes in CWP than the AOD. The radiative effect of the total anthropogenic aerosols is dominated by the anthropogenic sulfates that contribute more than 80% of the total AOD associated with the anthropogenic aerosols.

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jinwon Kim
    • 1
  • Yu Gu
    • 1
  • Kuo-Nan Liou
    • 1
  • Rokjin J. Park
    • 2
  • Chang-Keun Song
    • 3
  1. 1.Department of Atmospheric and Oceanic Sciences and Joint Institute for Regional Earth System Science and EngineeringUniversity of California Los AngelesLos AngelesUSA
  2. 2.School of Earth and Environmental SciencesSeoul National UniversitySeoulRepublic of Korea
  3. 3.National Institute of Environmental ResearchIncheonRepublic of Korea

Personalised recommendations