Article

Language Resources and Evaluation

, Volume 44, Issue 4, pp 347-370

The Corpus DIMEx100: transcription and evaluation

  • Luis A. PinedaAffiliated withInstituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM) Email author 
  • , Hayde CastellanosAffiliated withInstituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM)
  • , Javier CuétaraAffiliated withFacultad de Filosofía y Letras, UNAM
  • , Lucian GalescuAffiliated withFlorida Institute for Human and Machine Cognition
  • , Janet JuárezAffiliated withInstituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM)
  • , Joaquim LlisterriAffiliated withDepartament de Filologia Espanyola, Universitat Autònoma de Barcelona
  • , Patricia PérezAffiliated withInstituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM)
  • , Luis VillaseñorAffiliated withInstituto Nacional de Astrofísica, Óptica y Electrónica (INAOE)

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In this paper the transcription and evaluation of the corpus DIMEx100 for Mexican Spanish is presented. First we describe the corpus and explain the linguistic and computational motivation for its design and collection process; then, the phonetic antecedents and the alphabet adopted for the transcription task are presented; the corpus has been transcribed at three different granularity levels, which are also specified in detail. The corpus statistics for each transcription level are also presented. A set of phonetic rules describing phonetic context observed empirically in spontaneous conversation is also validated with the transcription. The corpus has been used for the construction of acoustic models and a phonetic dictionary for the construction of a speech recognition system. Initial performance results suggest that the data can be used to train good quality acoustic models.

Keywords

Phonetic corpus Phonetic transcription Transcription granularity Mexican Spanish Acoustic models