, Volume 43, Issue 2, pp 123-138
Date: 26 Feb 2009

Data and models for metonymy resolution

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We describe the first shared task for figurative language resolution, which was organised within SemEval-2007 and focused on metonymy. The paper motivates the linguistic principles of data sampling and annotation and shows the task’s feasibility via human agreement. The five participating systems mainly used supervised approaches exploiting a variety of features, of which grammatical relations proved to be the most useful. We compare the systems’ performance to automatic baselines as well as to a manually simulated approach based on selectional restriction violations, showing some limitations of this more traditional approach to metonymy recognition. The main problem supervised systems encountered is data sparseness, since metonymies in general tend to occur more rarely than literal uses. Also, within metonymies, the reading distribution is skewed towards a few frequent metonymy types. Future task developments should focus on addressing this issue.