Skip to main content
Log in

Hypermorphic expression of centromeric retroelement-encoded small RNAs impairs CENP-A loading

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The proper functioning of centromeres requires a complex cascade of epigenetic events involving chromatin and kinetochore assembly; however, the precise mechanism by which this cascade proceeds is unknown. The pivotal event during kinetochore formation is the “loading,” or deposition, of CENP-A. This histone H3 variant is specific to centromeres and replaces conventional H3 in centromeric chromatin. Failure to load CENP-A into mammalian centromeres in late telophase/early G1 of the cell cycle leads to malsegregation and cell division defects in subsequent cell cycles. Mounting evidence supports the hypothesis that an RNA component is involved, although how RNAs participate in centromere formation in mammals has remained unknown. Using the marsupial model, the tammar wallaby, we show that centromeric retroelements produce small RNAs and that hypermorphic expression of these centromeric small RNAs results in disruption of CENP-A localization. We propose that tight regulation of the processing of this new class of small RNAs, crasiRNAs, is an integral component of the epigenetic framework necessary for centromere establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CENP:

Centromere protein

siRNA:

Small interfering RNA

RNAi:

RNA interference

dsRNA:

Double-stranded RNA

KERV:

Kangaroo endogenous retrovirus

kLTR:

KERV long terminal repeat

crasiRNA:

Centromere repeat-associated short interacting RNA

H3:

Histone 3

miRNA:

MicroRNA

piRNA:

Piwi interacting RNA

IVT:

In vitro transcription

IC:

Immunochemistry

FITC:

Fluorescein isothiocyanate

N.A.:

Numerical aperture

FACS:

Fluorescence activated cell sorting

RISC:

RNA-induced silencing complex

LNA:

Locked nucleic acid

miSAT:

Minor satellite

LINE:

Long interspersed nuclear element

HAC:

Human artificial chromosome

HJURP:

Holliday junction recognition protein

ACA:

Anti-centromere antibody

PKR:

Protein kinase R

References

  • Allshire R, Karpen G (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9:923–937

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, Mahmood R, Li S, Cheung F, Yoda K, Warburton PE (2003) Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum Mol Genet 12:2711–2721

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, Fritz B, Hasson D, Abrusan G, Cheung F, Yoda K, Radlwimmer B, Ladurner AG, Warburton PE (2007) Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol 8:R148

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, Hasson D, Cheung F, Warburton PE (2010) A paucity of heterochromatin at functional human neocentromeres. Epigenetics Chromatin 3:6

    Article  PubMed  CAS  Google Scholar 

  • Amaral PP, Dinger ME, Mercer TR, Mattick JS (2008) The eukaryotic genome as an RNA machine. Science 319:1787–1789

    Article  PubMed  CAS  Google Scholar 

  • Bergmann JH, Rodriguez MG, Martins NM, Kimura H, Kelly DA, Masumoto H, Larionov V, Jansen LE, Earnshaw WC (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30:328–340

    Article  PubMed  CAS  Google Scholar 

  • Bergmann JH, Jakubsche JN, Martins NM, Kagansky A, Nakano M, Kimura H, Kelly DA, Turner BM, Masumoto H, Larionov V et al (2012) Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. J Cell Sci 125:411–421

    Article  PubMed  CAS  Google Scholar 

  • Bouzinba-Segard H, Guais A, Francastel C (2006) Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci U S A 103:8709–8714

    Article  PubMed  CAS  Google Scholar 

  • Brown JD, Strbuncelj M, Giardina C, O'Neill RJ (2002) Interspecific hybridization induced amplification of Mdm2 on double minutes in a Mus hybrid. Cytogenet Genome Res 98:184–188

    Article  PubMed  CAS  Google Scholar 

  • Caplen NJ, Fleenor J, Fire A, Morgan RA (2000) dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252:95–105

    Article  PubMed  CAS  Google Scholar 

  • Carone DM, Longo MS, Ferreri GC, Hall L, Harris M, Shook N, Bulazel KV, Carone BR, Obergfell C, O'Neill MJ et al (2009) A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. Chromosoma 118:113–125

    Article  PubMed  CAS  Google Scholar 

  • Carroll CW, Milks KJ, Straight AF (2010) Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol 189:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Chan FL, Wong LH (2012) Transcription in the maintenance of centromere chromatin identity. Nucleic Acids Res 40(22)

  • Chan FL, Marshall OJ, Saffery R, Won Kim B, Earle E, Choo KHA, Wong LH (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Natl Acad Sci 109:1979–1984

    Article  PubMed  Google Scholar 

  • Choo K (1997) The centromere. Oxford University Press, Oxford

    Google Scholar 

  • Chueh AC, Northrop EL, Brettingham-Moore KH, Choo KH, Wong LH (2009) LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin. PLoS Genet 5:e1000354

    Article  PubMed  CAS  Google Scholar 

  • Clarke PA, Mathews MB (1995) Interactions between the double-stranded RNA binding motif and RNA: definition of the binding site for the interferon-induced protein kinase DAI (PKR) on adenovirus VA RNA. RNA 1:7–20

    PubMed  CAS  Google Scholar 

  • Clemens MJ (2001) Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. Prog Mol Subcell Biol 27:57–89

    PubMed  CAS  Google Scholar 

  • du Sart D, Cancilla MR, Earle E, Mao JI, Saffery R, Tainton KM, Kalitsis P, Martyn J, Barry AE, Choo KH (1997) A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 16:144–153

    Article  PubMed  Google Scholar 

  • Du Y, Topp CN, Dawe RK (2010) DNA binding of centromere protein C (CENPC) is stabilized by single-stranded RNA. PLoS Genet 6:e1000835

    Article  PubMed  CAS  Google Scholar 

  • Dunleavy EM, Roche D, Tagami H, Lacoste N, Ray-Gallet D, Nakamura Y, Daigo Y, Nakatani Y, Almouzni-Pettinotti G (2009) HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137:485–497

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Mellone BG, Betts CM, Zhang W, Karpen G, Straight AF (2008) Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J Cell Biol 183:805–818

    Article  PubMed  CAS  Google Scholar 

  • Eymery A, Horard B, El Atifi-Borel M, Fourel G, Berger F, Vitte AL, Van den Broeck A, Brambilla E, Fournier A, Callanan M et al (2009) A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Res 37:6340–6354

    Article  PubMed  CAS  Google Scholar 

  • Ferreri GC, Liscinsky DM, Mack JA, Eldridge MD, O'Neill RJ (2005) Retention of latent centromeres in the mammalian genome. J Hered 96:217–224

    Article  PubMed  CAS  Google Scholar 

  • Ferreri GC, Brown JD, Obergfell C, Jue N, Finn CE, O'Neill MJ, O'Neill RJ (2011) Recent amplification of the kangaroo endogenous retrovirus, KERV, limited to the centromere. J Virol 85:4761–4771

    Article  PubMed  CAS  Google Scholar 

  • Ferri F, Bouzinba-Segard H, Velasco G, Hube F, Francastel C (2009) Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res 37:5071–5080

    Article  PubMed  CAS  Google Scholar 

  • Fishel B, Amstutz H, Baum M, Carbon J, Clarke L (1988) Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 8:754–763

    PubMed  CAS  Google Scholar 

  • Folco HD, Pidoux AL, Urano T, Allshire RC (2008) Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319:94–97

    Article  PubMed  CAS  Google Scholar 

  • Foltz DR, Jansen LE, Bailey AO, Yates JR 3rd, Bassett EA, Wood S, Black BE, Cleveland DW (2009) Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137:472–484

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Hayashi T, Kiyomitsu T, Toyoda Y, Kokubu A, Obuse C, Yanagida M (2007) Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev Cell 12:17–30

    Article  PubMed  CAS  Google Scholar 

  • Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, Nakayama T, Oshimura M (2004) Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 6:784–791

    Article  PubMed  CAS  Google Scholar 

  • Gan L, Anton KE, Masterson BA, Vincent VA, Ye S, Gonzalez-Zulueta M (2002) Specific interference with gene expression and gene function mediated by long dsRNA in neural cells. J Neurosci Methods 121:151–157

    Article  PubMed  CAS  Google Scholar 

  • Gent JI, Dawe RK (2012) RNA as a structural and regulatory component of the centromere. Annu Rev Genet 46:443–53

    Article  PubMed  CAS  Google Scholar 

  • Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM, Vale RD, Stuurman N (2007) Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316:417–421

    Article  PubMed  CAS  Google Scholar 

  • Hall LE, Mitchell SE, O'Neill RJ (2012) Pericentric and centromeric transcription: a perfect balance required. Chromosome Res 20:535–546

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  PubMed  CAS  Google Scholar 

  • Hsieh CL, Lin CL, Liu H, Chang YJ, Shih CJ, Zhong CZ, Lee SC, Tan BC (2011) WDHD1 modulates the post-transcriptional step of the centromeric silencing pathway. Nucleic Acids Res 39(10):4048–62

    Article  PubMed  CAS  Google Scholar 

  • Jansen L, Black B, Foltz D, Cleveland D (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176:795–805

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Lamb JC, Vega JM, Dawe RK, Birchler JA, Jiang J (2005) Molecular and functional dissection of the maize B chromosome centromere. Plant Cell 17:1412–1423

    Article  PubMed  CAS  Google Scholar 

  • Kanellopoulou C, Muljo S, Kung A, Ganesan S, Drapkin R, Jenuwein T, Livingston D, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19:489–501

    Article  PubMed  CAS  Google Scholar 

  • Karpen GH, Allshire RC (1997) The case for epigenetic effects on centromere identity and function. Trends Genet 13:489–496

    Article  PubMed  CAS  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  PubMed  CAS  Google Scholar 

  • Lee HR, Neumann P, Macas J, Jiang J (2006) Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice. Mol Biol Evol 23:2505–2520

    Article  PubMed  CAS  Google Scholar 

  • Lindsay J, Carone D, Brown J, Hall L, Qureshi S, Mitchell S, Jannetty N, Hannon G, Renfree M, Pask A et al (2012) Unique small RNA signatures uncovered in the tammar wallaby genome. BMC Genomics (in press)

  • Lo AW, Magliano DJ, Sibson MC, Kalitsis P, Craig JM, Choo KH (2001) A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res 11:448–457

    Article  PubMed  CAS  Google Scholar 

  • May BP, Lippman ZB, Fang Y, Spector DL, Martienssen RA (2005) Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet 1:e79

    Article  PubMed  CAS  Google Scholar 

  • Mellone BG, Zhang W, Karpen GH (2009) Frodos found: behold the CENP-a "Ring" bearers. Cell 137:409–412

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe CJ, Bulazel KV, Ferreri GC, Schroeder-Reiter E, Wanner G, Rens W, Obergfell C, Eldridge MD, O'Neill RJ (2007) Genomic instability within centromeres of interspecific marsupial hybrids. Genetics 177:2507–2517

    Article  PubMed  CAS  Google Scholar 

  • Murchison E, Partridge J, Tam O, Cheloufi S, Hannon G (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A 102:12135–12140

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Okamoto Y, Ohzeki J, Masumoto H (2003) Epigenetic assembly of centromeric chromatin at ectopic alpha-satellite sites on human chromosomes. J Cell Sci 116:4021–4034

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P, Kandels-Lewis S, Larionov V, Earnshaw WC, Masumoto H (2008) Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14:507–522

    Article  PubMed  CAS  Google Scholar 

  • Neumann P, Yan H, Jiang J (2007) The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics 176:749–761

    Article  PubMed  CAS  Google Scholar 

  • Okamoto Y, Nakano M, Ohzeki J, Larionov V, Masumoto H (2007) A minimal CENP-A core is required for nucleation and maintenance of a functional human centromere. EMBO J 26:1279–1291

    Article  PubMed  CAS  Google Scholar 

  • O'Neill RJ, O'Neill MJ, Graves JA (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393:68–72

    Article  PubMed  Google Scholar 

  • Paddison PJ, Caudy AA, Hannon GJ (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci U S A 99:1443–1448

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M et al (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276

    Article  PubMed  CAS  Google Scholar 

  • Raefski AS, O'Neill MJ (2005) Identification of a cluster of X-linked imprinted genes in mice. Nat Genet 37:620–624

    Article  PubMed  CAS  Google Scholar 

  • Renfree MB, Papenfuss AT, Deakin JE, Lindsay J, Heider T, Belov K, Rens W, Waters PD, Pharo EA, Shaw G et al (2011) Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol 12:R81

    Article  PubMed  Google Scholar 

  • Reyes-Turcu FE, Zhang K, Zofall M, Chen E, Grewal SIS (2011) Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin. Nat Struct Mol Biol 18(10):1132–1138

    Article  PubMed  CAS  Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115

    Article  PubMed  CAS  Google Scholar 

  • Sullivan KF, Hechenberger M, Masri K (1994) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 127:581–592

    Article  PubMed  CAS  Google Scholar 

  • Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ, Contino G, Deshpande V, Iafrate AJ, Letovsky S et al (2011) Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331:593–596

    Article  PubMed  CAS  Google Scholar 

  • Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci U S A 101:15986–15991

    Article  PubMed  CAS  Google Scholar 

  • Valgardsdottir R, Chiodi I, Giordano M, Cobianchi F, Riva S, Biamonti G (2005) Structural and functional characterization of noncoding repetitive RNAs transcribed in stressed human cells. Mol Biol Cell 16:2597–2604

    Article  PubMed  CAS  Google Scholar 

  • Volpe T, Kidner C, Hall I, Teng G, Grewal S, Martienssen R (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837

    Article  PubMed  CAS  Google Scholar 

  • Volpe T, Schramke V, Hamilton G, White S, Teng G, Martienssen R, Allshire R (2003) RNA interference is required for normal centromere function in fission yeast. Chromosome Res 11:137–146

    Article  PubMed  CAS  Google Scholar 

  • Warburton PE, Cooke CA, Bourassa S, Vafa O, Sullivan BA, Stetten G, Gimelli G, Warburton D, Tyler-Smith C, Sullivan KF et al (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7:901–904

    Article  PubMed  CAS  Google Scholar 

  • Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, Northrop EL, Hannan R, Saffery R, Shaw ML, Williams E et al (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17:1146–1160

    Article  PubMed  CAS  Google Scholar 

  • Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM, Gage FH, Verma IM (2011) BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477:179–184

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Center for Applied Genetics and Technology for instrumentation, S. Kasowitz for xlr3b dsRNA and A. Pask and M. Renfree for tammar material. A special thanks to A. Pask and B. Mellone for helpful discussion and comments on the manuscript and B. Mellone and I. Oderberg for SoftWoRx quantification protocols. This work was supported by grants from the UCRF and NSF to RJO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel J. O’Neill.

Additional information

Responsible Editor: Beth A. Sullivan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carone, D.M., Zhang, C., Hall, L.E. et al. Hypermorphic expression of centromeric retroelement-encoded small RNAs impairs CENP-A loading. Chromosome Res 21, 49–62 (2013). https://doi.org/10.1007/s10577-013-9337-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-013-9337-0

Keywords

Navigation