, Volume 17, Issue 2, pp 239-249
Date: 24 Mar 2009

Studies of meiosis disclose distinct roles of cohesion in the core centromere and pericentromeric regions

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


During meiosis, a single round of genome duplication is followed by two sequential rounds of chromosome segregation. Through this process, a diploid parent cell generates gametes with a haploid set of chromosomes. A characteristic of meiotic chromosome segregation is a stepwise loss of sister chromatid cohesion along chromosomal arms and at centromeres. Whereas arm cohesion plays an important role in ensuring homologue disjunction at meiosis I, persisting cohesion at pericentromeric regions throughout meiosis I is essential for the faithful equational segregation of sisters in the following meiosis II, similar to mitosis. A widely conserved pericentromeric protein called shugoshin, which associates with protein phosphatase 2A (PP2A), plays a critical role in this protection of cohesin. Another key aspect of meiosis I is the establishment of monopolar attachment of sister kinetochores to spindle microtubules. Cohesion or physical linkage at the core centromeres, where kinetochores assemble, may conjoin sister kinetochores, leading to monopolar attachment. A meiosis-specific kinetochore factor such as fission yeast Moa1 or budding yeast monopolin contributes to this regulation. We propose that cohesion at the core centromere and pericentromeric regions plays distinct roles, especially in defining the orientation of kinetochores.

Responsible Editor: Christian H. Haering.