Chromosome Research

, Volume 17, Issue 2, pp 239–249

Studies of meiosis disclose distinct roles of cohesion in the core centromere and pericentromeric regions


DOI: 10.1007/s10577-008-9013-y

Cite this article as:
Sakuno, T. & Watanabe, Y. Chromosome Res (2009) 17: 239. doi:10.1007/s10577-008-9013-y


During meiosis, a single round of genome duplication is followed by two sequential rounds of chromosome segregation. Through this process, a diploid parent cell generates gametes with a haploid set of chromosomes. A characteristic of meiotic chromosome segregation is a stepwise loss of sister chromatid cohesion along chromosomal arms and at centromeres. Whereas arm cohesion plays an important role in ensuring homologue disjunction at meiosis I, persisting cohesion at pericentromeric regions throughout meiosis I is essential for the faithful equational segregation of sisters in the following meiosis II, similar to mitosis. A widely conserved pericentromeric protein called shugoshin, which associates with protein phosphatase 2A (PP2A), plays a critical role in this protection of cohesin. Another key aspect of meiosis I is the establishment of monopolar attachment of sister kinetochores to spindle microtubules. Cohesion or physical linkage at the core centromeres, where kinetochores assemble, may conjoin sister kinetochores, leading to monopolar attachment. A meiosis-specific kinetochore factor such as fission yeast Moa1 or budding yeast monopolin contributes to this regulation. We propose that cohesion at the core centromere and pericentromeric regions plays distinct roles, especially in defining the orientation of kinetochores.


cohesin centromere meiosis kinetochore orientation shugoshin 



casein kinase 1 δ/ɛ


heterochromatin protein 1


mitotic centromere-associated kinesin


mouse embryonic fibroblast


protein phosphatase 2A


structural maintenance of chromosome

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular BiosciencesUniversity of TokyoTokyoJapan
  2. 2.Promotion of Independence for Young InvestigatorsUniversity of TokyoTokyoJapan
  3. 3.Graduate Program in Biophysics and Biochemistry, Graduate School of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations