Combustion, Explosion, and Shock Waves

, Volume 45, Issue 2, pp 211–217

Experimental investigation of gasless detonation in metal-sulfur compositions


  • F. -X. Jetté
    • McGill University
  • S. Goroshin
    • McGill University
    • McGill University
  • J. J. Lee
    • DRDC-Suffield

DOI: 10.1007/s10573-009-0028-2

Cite this article as:
Jetté, F.-., Goroshin, S., Higgins, A.J. et al. Combust Explos Shock Waves (2009) 45: 211. doi:10.1007/s10573-009-0028-2


Samples of zinc-sulfur and manganese-sulfur mixtures are shocked using an explosive pentolite charge to investigate if a shock-initiated reaction is able to support continued shock wave propagation. Samples of two different nominal densities (62 and 86% of theoretical maximum density) are prepared as weakly confined cylinders 50 mm in diameter and are instrumented along their length (⩽280 mm) with sensitive piezoelectric pins. Experimental results showed that the shock wave transmitted into the sample by the explosive rapidly decays to an acoustic wave in all four sample types. Furthermore, in denser samples, the part of the sample farthest from the explosive is recovered intact and unreacted, which clearly indicates that the wave is unable to trigger reactions after 100 mm of travel along the sample. Thus, it is concluded that insufficient reaction energy is transmitted forward to the shock wave to prevent its decay as it travels along the sample.

Key words

gasless detonationshock wavezinc-sulfur mixturemanganese-sulfur mixture

Copyright information

© MAIK/Nauka 2009