Cellular and Molecular Neurobiology

, 29:235

Dynamic Alterations of Cerebral Pial Microcirculation During Experimental Subarachnoid Hemorrhage

Original Paper

DOI: 10.1007/s10571-008-9316-8

Cite this article as:
Sun, BL., Zheng, CB., Yang, MF. et al. Cell Mol Neurobiol (2009) 29: 235. doi:10.1007/s10571-008-9316-8


The study aimed to investigate the involvement of cerebral microcirculation turbulence after subarachnoid hemorrhage (SAH). Wistar rats were divided into non-SAH and SAH groups. Autologous arterial hemolysate was injected into rat’s cisterna magna to induce SAH. Changes of pial microcirculation within 2 h were observed. It was found that there were no obvious changes of the diameters, flow velocity, and fluid state of microvessels in non-SAH group. With the exception of rare linear-granular flow in A4 arteriole, linear flow was observed in most of the arterioles. There was no blood agglutination in any of the arterioles. After SAH, abnormal cerebral pial microcirculation was found. Spasm of microvessels, decreased blood flow, and agglutination of red blood cells occurred. Five minutes following the induction of SAH, the diameters of the arterioles and venules significantly decreased. The decreased diameters persisted for 2 h after cisternal injection. Decreased flow velocity of venules was found from 5 to 90 min after induction of SAH. Spasm of the basilar artery and increased brain malondialdehyde were also found after SAH. We concluded that cerebral microcirculation turbulence plays an important role in the development of secondary cerebral ischemia following SAH.


Subarachnoid hemorrhageSecondary cerebral ischemiaMicrocirculationRat

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Neurology & Institute of MicrocirculationAffiliated Hospital, Taishan Medical CollegeTaianChina
  2. 2.Taishan Medical CollegeTaianChina
  3. 3.Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
  4. 4.School of Biomedical SciencesCharles Sturt UniversityWagga WaggaAustralia