, Volume 27, Issue 8, pp 1069-1083
Date: 07 Sep 2007

Valproic Acid Alters GnRH-GABA Interactions in Cycling Female Rats

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Summary of the aims Women with epilepsy using antiepileptic drug valproic acid (VPA) often suffer from reproductive endocrine disorders, menstrual disorders and polycystic ovaries. Valproic acid exerts anticonvulsive effects via gamma amino butyric acid (GABA) neurotransmitter system, which also acts as a neurochemical regulator of gonadotropin-releasing hormone (GnRH) neurons and suggests possibility of valproic acid mediated interruption in gonadotropin releasing hormone pulse generator in hypothalamus. The aim of this study was to investigate the effects of valproic acid treatment on the expression of gonadotropin releasing hormone, gamma amino butyric acid and polysialylated form of neural cell adhesion molecule (PSA-NCAM) a marker of neuronal plasticity in the median preoptic area (mPOA) and median eminence-arcuate (ME-ARC) region having GnRH neuron cell bodies and axon terminals, respectively. Methods Three-month-old virgin Wistar strain female rats received VPA (i.p.) at a dose of 300 mg/kg once a day for 12 weeks; control group received an equivalent volume of vehicle. GnRH, GABA and PSA-NCAM expressions were studied by immunohistofluorescence technique from mPOA and ME-ARC region of hypothalamus. Ovarian histology was also studied using Mayer’s Haematoxylin-Eosin staining method. Results GnRH and PSA-NCAM staining was much higher in mPOA and ME-ARC region from vehicle treated control proestrous rats, whereas VPA treatment significantly enhanced GABA expression, and reduced both GnRH and PSA-NCAM expression. Mayer’s Haematoxylin-Eosin staining of mid-ovarian sections revealed significantly higher number of ovarian follicular cysts in VPA treated rats. Conclusions Our findings of alterations in GnRH and GABA expression and GnRH neuronal plasticity marker PSA-NCAM as well as changes in ovarian histology suggest that treatment with VPA disrupts hypothalamo-hypophyseal-gonadal axis (HPG) at the level of GnRH pulse generator in hypothalamus.