Skip to main content
Log in

Fabrication, characterization and evaluation of bacterial cellulose-based capsule shells for oral drug delivery

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) was investigated for the first time for the preparation of capsule shells for immediate and sustained release of drugs. The prepared capsule shells were characterized using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The BC capsule shells were studied for drug release using an USP type-I dissolution apparatus. Irrespective of the drying method and the thickness of the BC sheet, the capsule shells displayed an immediate drug release profile. Moreover, the addition of release-retardant cellulosic polymers sustained the drug release having first-order kinetics for hydroxypropylmethylcellulose and carboxymethyl cellulose sodium with R 2 values of 0.9995 and 0.9954, respectively. Furthermore, these capsules shells remained buoyant in 0.1 N HCl (pH 1.2) solution up to 12 h. This study showed that BC is a promising alternative to gelatin capsules with both immediate and sustained drug release properties depending upon the compositions of the encapsulated materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad N, Amin MCIM, Mahali SM, Ismail I, Chuang VTG (2014) Biocompatible and mucoadhesive bacterial cellulose-g-poly (acrylic acid) hydrogels for oral protein delivery. Mol Pharm 11(11):4130–4142

    Article  CAS  Google Scholar 

  • Bogner RH, Szweijkowski JP, Houston AP (2000) Release of morphine sulfate from compounded slow-release capsules: the effect of formulation on release. Int J Pharm Compd 5(5):401–405

    Google Scholar 

  • Bravo SA, Lamas MC, Salomón CJ (2002) In-vitro studies of diclofenac sodium controlled-release from biopolymeric hydrophilic matrices. J Pharm Pharm Sci 5(3):213–219

    CAS  Google Scholar 

  • Cai H, Sharma S, Liu W, Mu W, Liu W, Zhang X, Deng Y (2014) Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules 15(7):2540–2547

    Article  CAS  Google Scholar 

  • Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose—structure and characterization. Cell Chem Technol 45(1):13–21

    CAS  Google Scholar 

  • Clasen C, Sultanova B, Wilhelms T, Heisig P, Kulicke WM (2006) Effects of different drying processes on the material properties of bacterial cellulose membranes. Macromol Symp 244:48–58

    Article  CAS  Google Scholar 

  • Costa P, Lobo JMS (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 2:123–133

    Article  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose-the natural power to heal wounds. Biomaterials 27(2):145–151

    Article  CAS  Google Scholar 

  • Emami J, Tavakoli N, Movahedian A (2004) Formulation of sustained-release lithium carbonate matrix tablets: influence of hydrophilic materials on the release rate and in vitro-in vivo evaluation. J Pharm Pharm Sci 7(3):338–344

    CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Halib N, Amin M, Ahmad I (2012) Physicochemical properties and characterization of nata de coco from local food industries as a source of cellulose. Sains Malays 41(2):205–211

    CAS  Google Scholar 

  • Hardy I, Cook W, Melia C (2006) Compression and compaction properties of plasticised high molecular weight hydroxypropylmethylcellulose (HPMC) as a hydrophilic matrix carrier. Int J Pharm 311(1):26–32

    Article  CAS  Google Scholar 

  • Jipa IM, Stoica-Guzun A, Stroescu M (2012) Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT Food Sci Technol 47(2):400–406

    Article  CAS  Google Scholar 

  • Karuppiah S (2012) Analytical method development for dissolution release of finished solid oral dosage forms. IJCPR 4(2):48–53

    CAS  Google Scholar 

  • Khan T, Park JK, Kwon J-H (2007) Functional biopolymers produced by biochemical technology considering applications in food engineering. Korean J Chem Eng 24(5):816–826

    Article  CAS  Google Scholar 

  • Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T (2012) Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm 82(2):308–315

    Article  CAS  Google Scholar 

  • Lin D, Li R, Lopez-Sanchez P, Li Z (2015) Physical properties of bacterial cellulose aqueous suspensions treated by high pressure homogenizer. Food Hydrocoll 44:435–442

    Article  CAS  Google Scholar 

  • Liu S, Luo X, Zhou J (2013) Magnetic responsive cellulose nanocomposites and their applications. In: Ven T, Godbout T (eds) Cellulose–medical, pharmaceutical and electronic applications. InTech, Rijeka

    Google Scholar 

  • Lopes TD, Riegel-Vidotti IC, Grein A, Tischer CA, de Sousa Faria-Tischer PC (2014) Bacterial cellulose and hyaluronic acid hybrid membranes: production and characterization. Int J Biol Macromol 67:401–408

    Article  CAS  Google Scholar 

  • Moore JW, Flanner HH (1996) Mathematical comparison of dissolution profiles. Pharm Technol 20(6):64–74

    Google Scholar 

  • Moursy N, Afifi N, Ghorab D, El-Saharty Y (2003) Formulation and evaluation of sustained release floating capsules of nicardipine hydrochloride. Pharmazie 58(1):38–43

    CAS  Google Scholar 

  • Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102(2):579–592

    Article  Google Scholar 

  • Murtaza G, Ullah H, Khan SA, Mir S, Khan AK, Nasir B, Azhar S, Abid MA (2015) Formulation and in vitro dissolution characteristics of sustained-release matrix tablets of tizanidine hydrochloride. Trop J Pharm Res 14(2):219–225

    Article  CAS  Google Scholar 

  • Nath B, Nath LK, Mazumder B, Kumar P, Sharma N, Sahu BP (2010) Preparation and characterization of salbutamol sulphate loaded ethyl cellulose microspheres using water-in-oil-oil emulsion technique. Iran J Pharm Res 9(2):97–105

    CAS  Google Scholar 

  • Nellore RV, Rekhi GS, Hussain AS, Tillman LG, Augsburger LL (1998) Development of metoprolol tartrate extended-release matrix tablet formulations for regulatory policy consideration. J Control Release 50(1):247–256

    Article  CAS  Google Scholar 

  • Pa’E N, Hamid NIA, Khairuddin N, Zahan KA, Seng KF, Siddique BM, Muhamad II (2014) Effect of different drying methods on the morphology, crystallinity, swelling ability and tensile properties of nata de coco. Sains Malays 43(5):767–773

    Google Scholar 

  • Palmer D, Levina M, Nokhodchi A, Douroumis D, Farrell T, Rajabi-Siahboomi A (2011) The influence of sodium carboxymethylcellulose on drug release from polyethylene oxide extended release matrices. AAPS PharmSciTech 12(3):862–871

    Article  CAS  Google Scholar 

  • Park JK, Jung JY, Khan T (2009) Bacterial cellulose. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC Press, Boca Raton, pp 724–739

    Chapter  Google Scholar 

  • Patil P, Rao NR, Hiremath D (2014) Preparation and characterization of mucoadhesive microcapsules of salbutamol sulfate. Asian J Pharm 4(2):141–147

    Google Scholar 

  • Phisalaphong M, Jatupaiboon N (2008) Biosynthesis and characterization of bacteria cellulose–chitosan film. Carbohydr Polym 74(3):482–488

    Article  CAS  Google Scholar 

  • Prashant P, Rajendra A, Shivakumar S, Sridhar BK (2011) Preparation and evaluation of extended release matrix tablets of diltiazem using blends of Tamarind xyloglucan with gellan gum and sodium carboxymethyl cellulose. Pharm Lett 3(4):380–392

    CAS  Google Scholar 

  • Qin Z, Ji L, Yin X, Zhu L, Lin Q, Qin J (2014) Synthesis and characterization of bacterial cellulose sulfates using a SO3/pyridine complex in DMAc/LiCl. Carbohydr Polym 101:947–953

    Article  CAS  Google Scholar 

  • Qureshi J, Amir M, Ahuja A, Baboota S, Ali J (2008) Chronomodulated drug delivery system of salbutamol sulphate for the treatment of nocturnal asthma. Indian J Pharm Sci 70(3):351–356

    Article  CAS  Google Scholar 

  • Rabadiya B, Rabadiyaa P (2013) Review: capsule shell material from gelatin to non animal origin material. IJPRB 2(3):42–71

    CAS  Google Scholar 

  • Rajabi-Siahboomi AR, Bowtell RW, Mansfield P, Davies MC, Melia CD (1996) Structure and behavior in hydrophilic matrix sustained release dosage forms: 4. studies of water mobility and diffusion coefficients in the gel layer of HPMC tablets using NMR imaging. Pharm Res 13(3):376–380

    Article  CAS  Google Scholar 

  • Ravi PR, Kotreka UK, Saha RN (2008) Controlled release matrix tablets of zidovudine: effect of formulation variables on the in vitro drug release kinetics. AAPS PharmSciTech 9(1):302–313

    Article  CAS  Google Scholar 

  • Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10(1):1–8

    Article  CAS  Google Scholar 

  • Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88(2):596–603

    Article  CAS  Google Scholar 

  • Ullah M, Ullah H, Murtaza G, Mahmood Q, Hussain I (2015) Evaluation of influence of various polymers on dissolution and phase behavior of carbamazepine-succinic acid cocrystal in matrix tablets. BioMed Res Int. doi:10.1155/2015/870656 Article ID 870656

    Google Scholar 

  • Ullah H, Santos HA, Khan T (2016a) Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23(4):2291–2314

    Article  CAS  Google Scholar 

  • Ullah H, Wahid F, Santos HA, Khan T (2016b) Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 150:330–352

    Article  CAS  Google Scholar 

  • Varjonen S, Laaksonen P, Paananen A, Valo H, Hähl H, Laaksonen T, Linder MB (2011) Self-assembly of cellulose nanofibrils by genetically engineered fusion proteins. Soft Matter 7(6):2402–2411

    Article  CAS  Google Scholar 

  • Zeng M, Laromaine A, Roig A (2014) Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose 21(6):4455–4469

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Hanif Ullah would like to thank the COMSATS Institute of Information Technology, Pakistan, for the funded project and HEC, Pakistan for the scholarship. Dr. Hélder A. Santos acknowledges financial support from the Academy of Finland (decision nos. 252215 and 281300), the University of Helsinki Research Funds, the Biocentrum Helsinki and the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013, grant no. 310892).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hélder A. Santos or Taous Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, H., Badshah, M., Mäkilä, E. et al. Fabrication, characterization and evaluation of bacterial cellulose-based capsule shells for oral drug delivery. Cellulose 24, 1445–1454 (2017). https://doi.org/10.1007/s10570-017-1202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1202-4

Keywords

Navigation