Skip to main content
Log in

Rheological properties of cellulose nanocrystal-embedded polymer composites: a review

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanotechnology provides useful insights into the behavioural properties of materials from the nanoscale point of view, enabling researchers to develop new materials that were previously inconceivable. Cellulose is an ideal candidate for nanomaterial for nanotechnology because of its nanofibrillar structure, abundance, renewability, biodegradability and eco-friendly nature. Nanocrystalline cellulose materials have become the focus many studies related to these materials and their applications. This review summarises the current knowledge on the field of nanomaterials, focussing mainly on the rheological behaviour of polymer nanocomposites embedded with nanocrystalline cellulose. This review will enable better understanding of the use of nanocrystalline cellulose for the development and applications of cellulose nanocrystal-based nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alloin F, D’Aprea A, Dufresne A, El Kissi N, Bossard F (2011) Poly (oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18:957–973

    Article  CAS  Google Scholar 

  • Alvarez V, Terenzi A, Kenny J, Vazquez A (2004) Melt rheological behavior of starch-based matrix composites reinforced with short sisal fibers. Polym Eng Sci 44:1907–1914

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82

    Article  CAS  Google Scholar 

  • Aranguren MI, Marcovich NE, Salgueiro W, Somoza A (2013) Effect of the nano-cellulose content on the properties of reinforced polyurethanes. A study using mechanical tests and positron anihilation spectroscopy. Polym Test 32:115–122

    Article  CAS  Google Scholar 

  • Ashiqur R, Ching YC, Yong CK, Nur A, Ashok KC, Chuah CH, Liou NS (2015) Surface modification of natural fiber using Bi2O3/TiO2 composite for photocatalytic self-cleaning. BioResource 10(4):7405–7418

    Google Scholar 

  • Auad ML, Richardson T, Orts WJ, Medeiros ES, Mattoso LH, Mosiewicki MA, Marcovich NE, Aranguren MI (2011) Polyaniline-modified cellulose nanofibrils as reinforcement of a smart polyurethane. Polym Int 60:743–750

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Sanchez J-Y, El Kissi N, Dufresne A (2004) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37:1386–1393

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  CAS  Google Scholar 

  • Belgacem MN, Gandini A (2008) The state of the art. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Oxford, pp 1–19

    Google Scholar 

  • Ben Azouz K, Ramires EC, Van den Fonteyne W, El Kissi N, Dufresne A (2011) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1:236–240

    Article  CAS  Google Scholar 

  • Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macaromolecules 33:6011–6016

    Article  CAS  Google Scholar 

  • Boldizar A, Klason C, Kubát J, Näslund P, Sáha P (1987) Prehydrolyzed cellulose as reinforcing filler for thermoplastics. Int J Polym Mater 11:229–262

    Article  CAS  Google Scholar 

  • Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A 377:297–303

    Article  CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  • Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145

    Article  CAS  Google Scholar 

  • Cao X, Xu C, Wang Y, Liu Y, Liu Y, Chen Y (2013) New nanocomposite materials reinforced with cellulose nanocrystals in nitrile rubber. Polym Test 32:819–826

    Article  CAS  Google Scholar 

  • Cao Y, Pablo Z, Jeff Y, Robert M, Jason W (2015) The influence of cellulose nanocrystal additions on the performance of cement paste. Cement Concr Compos 56:73–83

    Article  CAS  Google Scholar 

  • Changsarn S, Mendez JD, Shanmuganathan K, Foster EJ, Weder C, Supaphol P (2011) Biologically inspired hierarchical design of nanocomposites based on poly(ethylene oxide) and cellulose nanofibers. Macromol Rapid Commun 32:1367–1372

    Article  CAS  Google Scholar 

  • Chauve G, Bras J (2014) Industrial point of view of nanocellulose materials and their possible applications. In: Oksman K, Mathew AP, Bismarck A, Rojas O, Sain M (eds) Handbook of green materials: processing technologies, properties and applications, vol 1. World Scientific Publishing, Singapore, pp 233–252

    Chapter  Google Scholar 

  • Ching YC, Ng TS (2014) Effect of preparation conditions on cellulose from oil palm empty fruit bunch fiber. Bioresource 9(4):6373–6385

    Article  CAS  Google Scholar 

  • Ching YC, Goh KY, Luqman CA, Kalyani N (2013) Effect of nanosilica and titania on thermal stability of polypropylene/oil palm empty fruit fibre composite. J Biobased Mater Bioenergy 7:169–174

    Article  CAS  Google Scholar 

  • Ching YC, Ashiqur R, Yong KC, Nazatul LS, Cheng HC (2015) Preparation and characterization of polyvinyl alcohol based composite reinforced with nanocellulose and nanosilica. BioResources 10(2):3364–3377

    Article  CAS  Google Scholar 

  • Dagnon KL, Way AE, Carson SO, Silva J, Maia J, Rowan SJ (2013) Controlling the rate of water-induced switching in mechanically dynamic cellulose nanocrystal composites. Macromolecules 46:8203–8212

    Article  CAS  Google Scholar 

  • Datta S, Singha NK, Naskar K, Bhardwaj Y, Sabharwal S (2010) Influence of electron beam radiation on mechanical and thermal properties of styrene-butadiene-styrene block copolymer. J Appl Polym Sci 115:2573–2581

    Article  CAS  Google Scholar 

  • Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13(8):2404–2409

    Article  CAS  Google Scholar 

  • Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082

    Article  CAS  Google Scholar 

  • Dong H, Strawhecker KE, Snyder JF, Orlicki JA, Reiner RS, Rudie AW (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr Polym 87:2488–2495

    Article  CAS  Google Scholar 

  • Dufresne A (2006) Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J Nanosci Nanotechnol 6:322–330

    CAS  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227

    Article  CAS  Google Scholar 

  • Durmus A, Kasgoz A, Macosko CW (2007) Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: structural characterization and quantifying clay dispersion by melt rheology. Polymer 48:4492–4502

    Article  CAS  Google Scholar 

  • Ebeling T, Paillet M, Borsali R, Diat O, Dufresne A, Cavaille JY, Chanzy H (1999) Shear-induced orientation phenomena in suspensions of cellulose microcrystals, revealed by small angle X-ray scattering. Langmuir 15:6123–6126

    Article  CAS  Google Scholar 

  • Eichhorn S, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder C, Thielemans W, Roman M, Renneckar S (2010) Review: Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • Ershad A, Yong KC, Ching YC, Chuah CH, Liou NS (2015) Effect of single and double stage chemically treated kenaf fibers on mechanical properties of polyvinyl alcohol film. BioResource 10(1):822–838

    Google Scholar 

  • Favier V, Canova G, Cavaillé J, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355

    Article  CAS  Google Scholar 

  • Future Markets (2012) The global market for nanocellulose 2017. Future Market Inc. Technoogy Report No. 60, 1st edn, Chapter 8

  • Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) Poly (ɛ-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: morphology, rheology, and thermo-mechanical properties. Polymer 52:1532–1538

    Article  CAS  Google Scholar 

  • Goffin A-L, Habibi Y, Raquez J-M, Dubois P (2012) Polyester-grafted cellulose nanowhiskers: a new approach for tuning the microstructure of immiscible polyester blends. ACS Appl Mater Interfaces 4:3364–3371

    Article  CAS  Google Scholar 

  • Goh KY, Ching YC, Cheng HC, Luqman CA, Liou N (2015) Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation. Cellulose. doi:10.1007/s10570-015-0812-y

    Google Scholar 

  • Gong G, Mathew AP, Oksman K (2011) Toughening effect of cellulose nanowhiskers on polyvinyl acetate: fracture toughness and viscoelastic analysis. Polym Compos 32:1492–1498

    Article  CAS  Google Scholar 

  • Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651

    Article  Google Scholar 

  • Goussé C, Chanzy H, Cerrada M, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575

    Article  CAS  Google Scholar 

  • Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244

    Article  CAS  Google Scholar 

  • Hatzikiriakos SG, Rathod N, Muliawan EB (2005) The effect of nanoclays on the processibility of polyolefins. Polym Eng Sci 45:1098–1107

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824

    Article  CAS  Google Scholar 

  • Hill RJ (2008) Elastic modulus of microfibrillar cellulose gels. Biomacromolecules 9:2963–2966

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito A, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Sheltami RM, Ahmad I, Abdullah I, Dufresne A (2015) Cellulose nanocrystal reinforced liquid natural rubber toughened unsaturated polyester: effects of filler content and surface treatment on its morphological, thermal, mechanical, and viscoelastic properties. Polymer 71:51–59

    Article  CAS  Google Scholar 

  • Krishnamoorti R (2007) Strategies for dispersing nanoparticles in polymers. MRS Bull 32:341–347

    Article  CAS  Google Scholar 

  • La Mantia F, Dintcheva NT, Morreale M, Vaca-Garcia C (2004) Green composites of organic materials and recycled post-consumer polyethylene. Polym Int 53:1888–1891

    Article  CAS  Google Scholar 

  • La Mantia F, Morreale M, Ishak Z (2005) Processing and mechanical properties of organic filler–polypropylene composites. J Appl Polym Sci 96:1906–1913

    Article  CAS  Google Scholar 

  • Lee J, Deng Y (2012) Increased mechanical properties of aligned and isotropic electrospun PVA nanofiber webs by cellulose nanowhisker reinforcement. Macromol Res 20:76–83

    Article  CAS  Google Scholar 

  • Li T, Wolcott M (2004) Rheology of HDPE–wood composites. I. Steady state shear and extensional flow. Compos A 35:303–311

    Article  CAS  Google Scholar 

  • Li M-C, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015a) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821–832

    Article  CAS  Google Scholar 

  • Li M-C, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015b) Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Appl Mater Interfaces 7:5006–5016

    Article  CAS  Google Scholar 

  • Littunen K, Hippi U, Saarinen T, Seppälä J (2013) Network formation of nanofibrillated cellulose in solution blended poly (methyl methacrylate) composites. Carbohydr Polym 91:183–190

    Article  CAS  Google Scholar 

  • Liu H, Laborie M-PG (2011) Bio-based nanocomposites by in situ cure of phenolic prepolymers with cellulose whiskers. Cellulose 18:619–630

    Article  CAS  Google Scholar 

  • Liu H, Liu D, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101:5685–5692

    Article  CAS  Google Scholar 

  • Liu D, Chen X, Yue Y, Chen M, Wu Q (2011) Structure and rheology of nanocrystalline cellulose. Carbohydr Polym 84:316–322

    Article  CAS  Google Scholar 

  • López-Suevos F, Eyholzer C, Bordeanu N, Richter K (2010) DMA analysis and wood bonding of PVAC latex reinforced with cellulose nanofibrils. Cellulose 17:387–398

    Article  CAS  Google Scholar 

  • Mabrouk AB, Magnin A, Belgacem MN, Boufi S (2011) Melt rheology of nanocomposites based on acrylic copolymer and cellulose whiskers. Compos Sci Technol 71:818–827

    Article  CAS  Google Scholar 

  • Mahi H, Rodrigue D (2012) Linear and non-linear viscoelastic properties of ethylene vinyl acetate/nano-crystalline cellulose composites. Rheol Acta 51:127–142

    Article  CAS  Google Scholar 

  • Marcovich N, Auad M, Bellesi N, Nutt S, Aranguren M (2006) Cellulose micro/nanocrystals reinforced polyurethane. J Mater Res 21:870–881

    Article  CAS  Google Scholar 

  • Mendez J, Annamalai PK, Eichhorn SJ, Rusli R, Rowan SJ, Foster EJ, Weder C (2011) Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 44:6827–6835

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Mukherjee T, Kao N, Gupta RK, Quazi N, Bhattacharya S (2012) Reinforcing function of surface acetylated cellulose on polylactic acid (PLA) based biopolymer. In: 36th annual condensed matter and materials meeting, February, Wagga, Australia, pp FO03:01-04

  • Mukherjee T, Sani M, Kao N, Gupta RK, Quazi N, Bhattacharya S (2013) Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation. Chem Eng Sci 101:655–662

    Article  CAS  Google Scholar 

  • Ng TC, Ching YC, Nur A, Ishenny N, Rahman MR (2014) Effect of bleaching condition on thermal properties and UV-transmittance of PVA/cellulose biocomposites. Mater Res Innov 18:400–404

    Article  Google Scholar 

  • Nurfatimah B, Ching YC, Luqman CA, Chantara TR, Nor A (2014) Effect of methyl methacrylate grafted kenaf on mechanical properties of polyvinyl chloride/ethylene inyl acetate composites. Compos A 63:45–50

    Article  CAS  Google Scholar 

  • Nurfatimah B, Ching YC, Luqman CA, Chantara TR, Nor A (2015) Thermal and dynamic mechanical properties of grafted kenaf filled poly(vinyl chloride)/ethylene vinyl acetate composites. Mater Des 65:204–211

  • Onogi S and Asada T (1980) Rheology, and rheo-optics of polymer liquid crystals. In: Astarita G, Marrucci G, Nicholais L (eds) Rheology, Proc. 8th Int’l Congr. Rheol., vol I. Plenum, Naples, New York, pp 127–147

  • Ortz WJ, Godbout L, Marchessault RH, Revol JF (1995) Shear-induced alignment of liquid-crystalline suspensions of cellulose microfibrils. In: Nakatani AI, Dadmun MD (eds) Flow-induced structure in polymers, ACS Symposium Series, vol 597. American Chemical Society, Washington, p 333

    Google Scholar 

  • Pasquini D, Teixeira EdM, Curvelo AAdS, Belgacem MN, Dufresne A (2010) Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Ind Crops Prod 32:486–490

    Article  CAS  Google Scholar 

  • Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681

    Article  CAS  Google Scholar 

  • Postek MT, Vladar A, Dagata J, Farkas N, Ming B, Wagner R, Raman A, Moon RJ, Sabo R, Wegner TH, Beecher J (2010) Development of the metrology and imaging of cellulose nanocrystals. Meas Sci Technol 22:024005

    Article  CAS  Google Scholar 

  • Rojas OJ, Montero GA, Habibi Y (2009) Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. J Appl Polym Sci 113:927–935

    Article  CAS  Google Scholar 

  • Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44(8):2489–2498

    Article  CAS  Google Scholar 

  • Rubentheren V, Thomas AW, Ching YC, Praveena N (2015a) Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid. Cellulose. doi:10.1007/s10570-015-0650-y

    Google Scholar 

  • Rubentheren V, Ward TA, Ching YC, Tang CK (2015b) Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydr Polym 115:379–387

    Article  CAS  Google Scholar 

  • Seng KC, Ealid M, Ching YC, Haniff M, Khalid K, Beg MTH (2014) Preparation and characterization on polyvinyl alcohol/oil palm empty fruit bunch fiber composite. Mater Res Innov 18:364–367

    Google Scholar 

  • Shafiei-Sabet S (2013) Shear rheology of cellulose nanocrystal (CNC) aqueous suspensions. Ph.D. Dissertation, The University of British Columbia, Vancouver

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28(49):17124–17133

    Article  CAS  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2013) Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol Acta 52:741–751

    Article  CAS  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21:3347–3359

    Article  CAS  Google Scholar 

  • Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    Article  CAS  Google Scholar 

  • Šumigin D, Tarasova E, Krumme A, Viikna A (2012) Influence of cellulose content on thermal properties of poly(lactic) acid/cellulose and low-density polyethylene/cellulose composites. Proc Est Acad Sci 61(3):237–244

    Article  CAS  Google Scholar 

  • Tan BK, Ching YC, Gan SN, Ramesh S, Shaifulazuar R (2015a) Biodegradable mulches based on poly(vinyl alcohol), kenaf fiber, and urea. Bioresources 10(3):5532–5543

    Article  CAS  Google Scholar 

  • Tan BK, Ching YC, Poh SC, Luqman CA, Gan SN (2015b) Review of natural fiber reinforced poly(vinyl alcohol) based composites: application and opportunity. Polymers 7:2205–2222

    Article  CAS  Google Scholar 

  • Ten E, Bahr DF, Li B, Jiang L, Wolcott MP (2012) Effects of cellulose nanowhiskers on mechanical, dielectric, and rheological properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites. Ind Eng Chem Res 51:2941–2951

    Article  CAS  Google Scholar 

  • Ten E, Jiang L, Wolcott MP (2013) Preparation and properties of aligned poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydr Polym 92:206–213

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Tzoumaki MV, Moschakis T, Biliaderis CG (2010) Metastability of nematic gels made of aqueous chitin nanocrystal dispersions. Biomacromolecules 11:175–181

    Article  CAS  Google Scholar 

  • Tzoumaki MV, Moschakis T, Biliaderis CG (2011) Mixed aqueous chitin nanocrystal-whey protein dispersions: microstructure and rheological behaviour. Food Hydrocoll 25:935–942

    Article  CAS  Google Scholar 

  • Urena-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990–8998

    Article  CAS  Google Scholar 

  • Verney V, Michel A (1989) Representation of the rheological properties of polymer melts in terms of complex fluidity. Rheol Acta 28:54–60

    Article  CAS  Google Scholar 

  • Wik V, Aranguren M, Mosiewicki M (2011) Castor oil-based polyurethanes containing cellulose nanocrystals. Polym Eng Sci 51:1389–1396

    Article  CAS  Google Scholar 

  • Wiria FE, Chua CK, Leong KF, Quah ZY, Chandrasekaran M, Lee MW (2008) Improved biocomposite development of poly (vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. J Mater Sci: Mater Med 19(3):989–996

    CAS  Google Scholar 

  • Woodhams RT, Thomas G, Rodgers DK (1984) Wood fibers as reinforcing fillers for polyolefins. Polym Eng Sci 24:1166–1171

    Article  CAS  Google Scholar 

  • Wu Q, Meng Y, Wang S, Li Y, Fu S, Ma L, Harper D (2014) Rheological behavior of cellulose nanocrystal suspension: influence of concentration and aspect ratio. J Appl Polym Sci 131:40525

    Google Scholar 

  • Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, Sun R-C, Xie X-M (2012) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly (acrylic acid). J Mater Chem 22:22467–22480

    Article  CAS  Google Scholar 

  • Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, Sun R-C (2013a) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels. Cellulose 20:227–237

    Article  CAS  Google Scholar 

  • Yang J, Han C-R, Duan J-F, Xu F, Sun R-C (2013b) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly (ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces 5:3199–3207

    Article  CAS  Google Scholar 

  • Yong KC, Ching YC, Mohamad A, Lim ZK, Chong KE (2015a) Mechanical and thermal properties of chemical treated oil palm empty fruit bunches fiber reinforced polyvinyl alcohol composite. J Biobased Mater Bioenergy 9:231–235

    Article  CAS  Google Scholar 

  • Yong KC, Ching YC, Cheng HC, Liou NS (2015b) Effect of fiber orientation on mechanical properties of kenaf-reinforced polymer composite. BioResources 10(2):2597–2608

    Article  CAS  Google Scholar 

  • Zadorecki P, Michell AJ (1989) Future prospects for wood cellulose as reinforcement in organic polymer composites. Polym Compos 10:69–77

    Article  CAS  Google Scholar 

  • Zhou C, Chu R, Wu R, Wu Q (2011a) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12:2617–2625

    Article  CAS  Google Scholar 

  • Zhou C, Wu Q, Zhang Q (2011b) Dynamic rheology studies of in situpolymerization process of polyacrylamide–cellulose nanocrystal composite hydrogels. Colloid Polym Sci 289:247–255

    Article  CAS  Google Scholar 

  • Zoppe JO, Peresin MS, Habibi Y, Venditti RA, Rojas OJ (2009) Reinforcing poly (ε-caprolactone) nanofibers with cellulose nanocrystals. ACS Appl Mater Interfaces 1:1996–2004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from High Impact Research MoE grant UM.C/625/1/HIR/MoE/52 from the Ministry of Education Malaysia, FP030-2013A, RU022A-2014, RP011A-13AET, RG031-15AET and FP053-2015A, which contributed to the the success of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yern Chee Ching.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ching, Y.C., Ershad Ali, M., Abdullah, L.C. et al. Rheological properties of cellulose nanocrystal-embedded polymer composites: a review. Cellulose 23, 1011–1030 (2016). https://doi.org/10.1007/s10570-016-0868-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0868-3

Keywords

Navigation