Skip to main content
Log in

Dewatering of MNFC containing microfibrils and microparticles from soybean hulls: mechanical and transport properties of hybrid films

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulosic microfibrils (SMF) and microparticles (SMP) extracted from soybean hulls were used in films and also combined with wood-based micro and nanofibrillar cellulose (MNFC) in hybrid systems. During film consolidation a remarkable reduction in water drainage was observed in the presence of SMF and SMP. The hybrid films displayed strength (elastic modulus and strength at rupture) and barrier performance similar to those of neat MNFC films, thus offering an option for reduced cost while keeping a performance from synergistic contributions of the components. Furthermore, dense films with low-porosity, a characteristics essential for barrier properties, can be easily produced by replacing up to 75 % of MNFC with SMF or SMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278

    Article  CAS  Google Scholar 

  • Azizi Samir MA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  • Corson SR (1989) Aspects of mechanical pulp fibre separation and development in a disc refiner. Pap Puu 71:801–814

    CAS  Google Scholar 

  • Ferrer A, Quintana E, Filpponen I, Solala I, Vidal T, Rodríguez A, Laine J, Rojas OJ (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19(6):2179–2193

    Article  CAS  Google Scholar 

  • Ferrer A, Salas C, Rojas, OJ (2015) Cellulosic microfibrils and microparticles from residual soybean hulls and their rheological performance in aqueous dispersions. Ind Crop Prod (submitted)

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165

    Article  CAS  Google Scholar 

  • González I, Alcalà M (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609

    Article  Google Scholar 

  • González I, Boufi S, Pèlach MA, Alcalà M, Vilaseca F, Mutjé P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7(4):5167–5180

    Article  Google Scholar 

  • Habibi Y, Mahrouz M, Vignon MR (2009) Microfibrillated cellulose from the peel of prickly pear fruits. Food Chem 115:423–429

    Article  CAS  Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  • López-Rubio A, Lagaron JM, Ankerfors M, Lindström T, Nordqvist D, Mattozzi A, Hedenqvist MS (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Polym 68(4):718–727

    Article  Google Scholar 

  • Mikkonen KS, Stevanic JS, Joly C, Dole P, Pirkkalainen K, Serimaa R, Salmén L, Tenkanen M (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18:713–726

    Article  CAS  Google Scholar 

  • Mikkonen KS, Pitkänen L, Liljeström V, Bergström EM, Serimaa R, Salmén L, Tenkanen M (2012) Arabinoxylan structure affects the reinforcement of films by microfibrillated cellulose. Cellulose 19:467–480

    Article  CAS  Google Scholar 

  • Molin U, Teder A (2002) Importance of cellulose/hemicellulose-ratio for pulp strength. Nord Pulp Pap Res J 17(1):14–19

    Article  CAS  Google Scholar 

  • Mondragón M, Arroyo K, Romero-García J (2008) Biocomposites of thermoplastic starch with surfactant. Carbohydr Polym 74:201–208

    Article  Google Scholar 

  • Nguyen HD, Mai TTT, Nguyen NB, Dang TD, Le MLP, Dang TT, Tran VM (2013) A novel method for preparing microfibrillated cellulose from bamboo fibers. Adv Nat Sci Nanosci Nanotechnol 4:015016

    Article  CAS  Google Scholar 

  • Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Berglund LA (2013) Nanofibrillated cellulose for enhancement of strength in high-density paper structures. Nord Pulp Pap Res J 28(2):182–189

    Article  CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MNFC films. Cellulose 16:75–85

    Article  CAS  Google Scholar 

  • Taipale T, Österberg M, Nykanen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020

    Article  CAS  Google Scholar 

  • Tamai Y, Aratani K (1972) Experimental study of the relation between contact angle and surface roughness. J Phys Chem 76(22):3267–3271

    Article  CAS  Google Scholar 

  • Varanasi S, Batchelor WJ (2013) Rapid preparation of cellulose nanofibre sheet. Cellulose 20(1):211–215

    Article  CAS  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994

    Article  CAS  Google Scholar 

  • Yousefi H, Faezipour M, Nishino T, Shakeri A, Ebrahimi G (2011) All-cellulose composite and nanocomposite made from partially dissolved micro and nano fibers of canola straw. Polym J 43:559–564

    Article  CAS  Google Scholar 

  • Zhu H, Fang Z, Preston C, Lia Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7:269–287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

TensTech Inc. is acknowledged for supplying the soybean hulls forms (SMP and SMF) used in this study. O.J.R. is grateful for funding support by the Academy of Finland through its Center of Excellence Program (2014–2019) “Molecular Engineering of Biosynthetic Hybrid Materials Research” (HYBER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando J. Rojas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrer, A., Salas, C. & Rojas, O.J. Dewatering of MNFC containing microfibrils and microparticles from soybean hulls: mechanical and transport properties of hybrid films. Cellulose 22, 3919–3928 (2015). https://doi.org/10.1007/s10570-015-0768-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0768-y

Keywords

Navigation