Skip to main content
Log in

Photodiodes based on wood pulp fiber networks

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Wood cellulose is a desirable inexpensive, abundant and biodegradable substrate material for flexible organic electronics. While paper-based conductors are easily achieved, their applicability for diode architectures is challenging. To diminish short circuits, smoothing fillers and coatings are used before diode deposition. In this report, an alternative approach for use of cellulose in organic photovoltaics is demonstrated, using natural, rough unmodified kraft pulp fiber networks as a carrier of a diode architecture. Silver nanowires are adsorbed by the hydroxyl groups of cellulose fiber, forming the semi-transparent anode. The follow-on coatings for the diode are simply deposited as a mantle on these fiber anodes. The potential of this approach is demonstrated by the first production of cellulose fiber-based P3HT:PCBM photovoltaic devices, showing clear diode behaviour in the dark and a significant photoresponse under illumination. Fill factors near 35 % and open-circuit voltages of 0.2 V were achieved without any optimization. Devices show even noticeable photocurrent at low unfavourable light conditions, indicating their advantageous capture of stray light within the paper fiber network. These results highlight that for “paper” diodes, its natural properties can be turned into advantages, instead of seeking routes to suppress them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdul Khalil H, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  CAS  Google Scholar 

  • Barnes T, van de Lagemaat J, Levi D, Rumbles G, Coutts T, Weeks C, Britz D, Levitsky I, Peltola J, Glatkowski P (2007) Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes. Phys Rev B 75(23):235410

    Article  Google Scholar 

  • Barr MC, Howden RM, Lunt RR, Bulović V, Gleason KK (2012) Top-illuminated organic photovoltaics on a variety of opaque substrates with vapor-printed poly(3,4-ethylenedioxythiophene) top electrodes and MoO3 buffer layer. Adv Energy Mater 2(11):1404–1409

    Article  CAS  Google Scholar 

  • Chen X, Zhu H, Liu C, Chen Y, Weadock N, Rubloff G, Hu L (2013) Role of mesoporosity in cellulose fibers for paper-based fast electrochemical energy storage. J Mater Chem A 1(28):8201

    Article  CAS  Google Scholar 

  • Chinga-Carrasco G, Averianova N, Kondalenko O, Garaeva M, Petrov V, Leinsvang B, Karlsen T (2014) The effect of residual fibres on the micro-topography of cellulose nanopaper. Micron 56:80–84

    Article  CAS  Google Scholar 

  • Choi J, Kim M, Seol M, Choi Y (2013) Transfer of functional memory devices to any substrate. Phys Status Solidi RRL 7(5):326–331

    Article  CAS  Google Scholar 

  • Costa SV, Gonçalves AS, Zaguete MA, Mazon T, Nogueira AF (2013) ZnO nanostructures directly grown on paper and bacterial cellulose substrates without any surface modification layer. Chem Commun 49(73):8096

    Article  CAS  Google Scholar 

  • Dang MT, Hirsch L, Wantz G (2011) P3HT:PCBM, best seller in polymer photovoltaic research. Adv Mater 23(31):3597–3602

    Article  CAS  Google Scholar 

  • Denneulin A, Blayo A, Bras J, Neuman C (2008) PEDOT:PSS coating on specialty papers: Process optimization and effects of surface properties on electrical performances. Prog Org Coat 63(1):87–91

    Article  CAS  Google Scholar 

  • Dogome K, Enomae T, Isogai A (2013) Method for controlling surface energies of paper substrates to create paper-based printed electronics. Chem Eng Process 68:21–25

    Article  CAS  Google Scholar 

  • Fortunato E, Barquinha P, Martins R (2012) Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater 24(22):2945–2986

    Article  CAS  Google Scholar 

  • Fujisaki Y, Koga H, Nakajima Y, Nakata M, Tsuji H, Yamamoto T, Kurita T, Nogi M, Shimidzu N (2014) Transparent nanopaper-based flexible organic thin-film transistor array. Adv Funct Mater 24(12):1657–1663

    Article  CAS  Google Scholar 

  • Galagan Y, Andriessen R, Rubingh E, Grossiord N, Blom P, Veenstra S, Verhees W, Kroon J (2010) Toward fully printed organic photovoltaics: processing and stability. international conference and exhibition for the organic and printed electronics industry, LOPE-C, large-area, organic & printed electronics convention (2010) Electronics Convention proceedings, LOPE-C 2010 scientific paper. May 31–June 2, 2010, Congress Center, Messe Frankfurt, Germany. OE-A, Frankfurt, Main

  • Głowacki ED, Voss G, Sariciftci NS (2013) 25th Anniversary article: progress in chemistry and applications of functional indigos for organic electronics. Adv Mater 25(47):6783–6800

    Article  Google Scholar 

  • Gomes TC, Constantino C, Lopes EM, Job AE, Alves N (2012) Thermal inkjet printing of polyaniline on paper. Thin Solid Films 520(24):7200–7204

    Article  CAS  Google Scholar 

  • Han J, Kim B, Li J, Meyyappan M (2012) Carbon nanotube based humidity sensor on cellulose paper. J Phys Chem C 116(41):22094–22097

    Article  CAS  Google Scholar 

  • Hennerdal L, Berggren M (2011) Picture-to-picture switching in full-color thermochromic paper displays. Appl Phys Lett 99(18):183303

    Article  Google Scholar 

  • Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT, McGehee MD, Wågberg L, Cui Y (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6(2):513

    Article  CAS  Google Scholar 

  • Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7(3):2106–2113

    Article  CAS  Google Scholar 

  • Hübler A, Trnovec B, Zillger T, Ali M, Wetzold N, Mingebach M, Wagenpfahl A, Deibel C, Dyakonov V (2011) Printed paper photovoltaic cells. Adv Energy Mater 1(6):1018–1022

    Article  Google Scholar 

  • Hyun WJ, Park OO, Chin BD (2013) Foldable graphene electronic circuits based on paper substrates. Adv Mater 25(34):4729–4734

    Article  CAS  Google Scholar 

  • Ihalainen P, Määttänen A, Järnström J, Tobjörk D, Österbacka R, Peltonen J (2012) Influence of surface properties of coated papers on printed electronics. Ind Eng Chem Res 51(17):6025–6036

    Article  CAS  Google Scholar 

  • Irimia-Vladu M (2013) “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev 43(2):588

    Article  Google Scholar 

  • Jabbour L, Destro M, Gerbaldi C, Chaussy D, Penazzi N, Beneventi D (2012) Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries. J Mater Chem 22(7):3227

    Article  CAS  Google Scholar 

  • Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103(1–3):2555–2558

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (eds) (1998) Comprehensive cellulose chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM (2005) Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells. Appl Phys Lett 86(12):123509

    Article  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764

    Article  CAS  Google Scholar 

  • Li S, Jia N, Ma M, Zhang Z, Liu Q, Sun R (2011) Cellulose–silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 86(2):441–447

    Article  CAS  Google Scholar 

  • Martins R, Ferreira I, Fortunato E (2011a) Electronics with and on paper. Phys Status Solidi RRL 5(9):332–335

    Article  CAS  Google Scholar 

  • Martins R, Nathan A, Barros R, Pereira L, Barquinha P, Correia N, Costa R, Ahnood A, Ferreira I, Fortunato E (2011b) Complementary metal oxide semiconductor technology with and on paper. Adv Mater 23(39):4491–4496

    Article  CAS  Google Scholar 

  • Miller RD, Chandross EA (2010) Introduction: materials for electronics. Chem Rev 110(1):1–2

    Article  CAS  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598

    Article  CAS  Google Scholar 

  • Nogi M, Komoda N, Otsuka K, Suganuma K (2013) Foldable nanopaper antennas for origami electronics. Nanoscale 5(10):4395–4399

    Article  CAS  Google Scholar 

  • Öhlund T, Örtegren J, Forsberg S, Nilsson H (2012) Paper surfaces for metal nanoparticle inkjet printing. Appl Surf Sci 259:731–739

    Article  Google Scholar 

  • Park B, You N, Reichmanis E (2012) Exciton dissociation and charge trapping at poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester bulk heterojunction interfaces: photo-induced threshold voltage shifts in organic field-effect transistors and solar cells. J Appl Phys 111(8):84908

    Article  Google Scholar 

  • Park B, Chan Kim Y, Yun SH (2013) All-solution-processed inverted polymer solar cells with low temperature, water-processable hybrid electron-collecting layers. J Mater Chem A 1(6):2030

    Article  CAS  Google Scholar 

  • Preston C, Fang Z, Murray J, Zhu H, Dai J, Munday JN, Hu L (2014) Silver nanowire transparent conducting paper-based electrode with high optical haze. J Mater Chem C 2(7):1248

    Article  CAS  Google Scholar 

  • Rhodes C, Franzen S, Maria J, Losego M, Leonard DN, Laughlin B, Duscher G, Weibel S (2006) Surface plasmon resonance in conducting metal oxides. J Appl Phys 100(5):54905

    Article  Google Scholar 

  • Russo A, Ahn BY, Adams JJ, Duoss EB, Bernhard JT, Lewis JA (2011) Pen-on-paper flexible electronics. Adv Mater 23(30):3426–3430

    Article  CAS  Google Scholar 

  • Siegel AC, Phillips ST, Dickey MD, Lu N, Suo Z, Whitesides GM (2010) Foldable printed circuit boards on paper substrates. Adv Funct Mater 20(1):28–35

    Article  CAS  Google Scholar 

  • Tobjörk D, Österbacka R (2011) Paper electronics. Adv Mater 23(17):1935–1961

    Article  Google Scholar 

  • Tobjörk D, Aarnio H, Pulkkinen P, Bollström R, Määttänen A, Ihalainen P, Mäkelä T, Peltonen J, Toivakka M, Tenhu H, Österbacka R (2012) IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 520(7):2949–2955

    Article  Google Scholar 

  • Tolstoy VP, Chernyshova IV, Skryshevsky VA (2003) Handbook of infrared spectroscopy of ultrathin films. Wiley, Hoboken

    Book  Google Scholar 

  • Torvinen K, Sievänen J, Hjelt T, Hellén E (2012) Smooth and flexible filler-nanocellulose composite structure for printed electronics applications. Cellulose 19(3):821–829

    Article  CAS  Google Scholar 

  • Wang J, Li L, Wong CL, Madhavi S (2012) Flexible single-walled carbon nanotube/polycellulose papers for lithium-ion batteries. Nanotechnology 23(49):495401

    Article  Google Scholar 

  • Weber F, Koller G, Schennach R, Bernt I, Eckhart R (2013) The surface charge of regenerated cellulose fibres. Cellulose 20(6):2719–2729

    Article  CAS  Google Scholar 

  • Weng Z, Su Y, Wang D, Li F, Du J, Cheng H (2011) Graphene–cellulose paper flexible supercapacitors. Adv. Energy Mater. 1(5):917–922

    Article  CAS  Google Scholar 

  • Xie L, Mäntysalo M, Cabezas AL, Feng Y, Jonsson F, Zheng L (2012) Electrical performance and reliability evaluation of inkjet-printed Ag interconnections on paper substrates. Mater Lett 88:68–72

    Article  CAS  Google Scholar 

  • Yang C, Gu H, Lin W, Yuen MM, Wong CP, Xiong M, Gao B (2011) Silver nanowires: from scalable synthesis to recyclable foldable electronics. Adv Mater 23(27):3052–3056

    Article  CAS  Google Scholar 

  • Zhu H, Fang Z, Preston C, Li Y, Hu L (2013) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7(1):269

    Article  Google Scholar 

  • Zschieschang U, Yamamoto T, Takimiya K, Kuwabara H, Ikeda M, Sekitani T, Someya T, Klauk H (2011) Organic electronics on banknotes. Adv Mater 23(5):654–658

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology, and Development, Austria, is gratefully acknowledged. H.K. and B.F. are grateful for financial support by NAWI Graz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Friedel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopeinik, H., Schennach, R., Gallik, J. et al. Photodiodes based on wood pulp fiber networks. Cellulose 22, 3425–3434 (2015). https://doi.org/10.1007/s10570-015-0739-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0739-3

Keywords

Navigation