Skip to main content
Log in

Modification of oil palm empty fruit bunch fibers by nanoparticle impregnation and alkali treatment

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Oil palm empty fruit bunch (EFB) fibers were impregnated by copper nanoparticles (CuNPs) through the cationization process as well as treated by alkali solutions. Mechanical properties of different single fibers were measured and analysed by the Weibull statistical distribution. The weak link scaling of Weibull analysis has provided valuable information to scale the strength of one EFB fiber to predict the strength of other one. The impregnation and interfacial interaction of CuNPs with fibers has been analysed by Fourier transformed infrared spectroscopy, X-ray diffraction study, field emission scanning electron microscopy, energy dispersive X-ray study and thermogravimetric analysis. A significant increase in mechanical property of modified fibers with respect to the control ones has been observed. The crystallinity and thermal stability of the treated fibers were also found to be changed. These findings strongly suggest that CuNPs can be used as an effective reinforcing agent in natural fibers to improve their mechanical property and durability.

Graphical Abstract

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AATCC (2002) AATCC 20A, Fibre analysis: quantitative. American Association of Textile Chemists and Colorists, Research Triangle Park, NC

  • Alam AKMM, Beg MDH, Prasad DMR, Khan MR, Mina MF (2012) Structures and performances of simultaneous ultrasound and alkali treated oil palm empty fruit bunch fibre reinforced poly(lactic acid) composites. Compos Part A 43:1921–1929

    Article  Google Scholar 

  • Bader MG, Pickering KL, Buxton A, Rezaifard A, Smith PA (1993) Failure micromechanisms in continuous carbonfibre/epoxy-resin composites. Compos Sci Technol 48:135–142

    Article  CAS  Google Scholar 

  • Biagiotti J, Puglia D, Kenny JM (2004a) A review on natural fibre based composites—Part I: structure, processing and properties of vegetable fibres. J Nat Fibres 1:37–68

    Article  CAS  Google Scholar 

  • Biagiotti J, Puglia D, Torre L, Kenny JM, Arbelaiz A, Cantero G, Marieta C, Llano-Ponte R, Mondragon I (2004b) A systematic investigation on the influence of the chemical treatment of natural fibres on the properties of their polymer matrix composites. Polym Compos 25:470–479

    Article  CAS  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Castellanos LJ, Blanco-Tirado C, Hinestroza JP, Combariza MY (2012) In situ synthesis of gold nanoparticles using fique natural fibers as template. Cellulose 19:1933–1943

    Article  CAS  Google Scholar 

  • Chattopadhyay DP, Patel BH (2009) Improvement of physical and dyeing properties of natural fibres through pre-treatment with silver nanoparticles. Indian J Fiber Text Res 34:368–373

    CAS  Google Scholar 

  • Chen S, Chen S, Jiang S, Xiong M, Luo J, Tang J, Ge Z (2011) Environmentally friendly antibacterial cotton textiles finished with siloxane sulfopropylbetaine. ACS Appl Mater Interfaces 3:1154–1162

    Article  CAS  Google Scholar 

  • Ferrer A, Vega A, Ligero P, Rodríguez A (2011) Pulping of empty fruit bunches (EFB) from the palm oil industry by formic acid. BioResources 6:4282–4301

    Google Scholar 

  • Huang Z, Cui F, Kang H, Chen J, Zhang X, Xia C (2008) Highly dispersed silica-supported copper nanoparticles prepared by precipitation-gel method: a simple but efficient and stable catalyst for glycerol hydrogenolysis. Chem Mater 20:5090–5099

    Article  CAS  Google Scholar 

  • Inagaki T, Siesler HW, Mitsui K, Tsuchikawa S (2010) Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Biomacromolecules 11:2300–2305

    Article  CAS  Google Scholar 

  • Jai B, Mei Y, Cheng L, Zhou J, Zhang L (2012) Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl Mater Interfaces doi:10.1021/am3007609

  • Khalil-Abad MS, Yazdanshenas ME, Nateghi MR (2009) Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16:1147–1157

    Article  Google Scholar 

  • Kimball F (1960) On the choice of plotting positions on probability paper. J Am Stat Assoc 55:546–560

    Article  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Kumer RV, Koltypin Y, Gedanken A (2002) Preparation and characterization of nickel-polystyrene nanocomposite by ultrasound irradiation. J Appl Polym Sci 86:160–165

    Article  Google Scholar 

  • Law KN, Daud WRW, Ghazali A (2007) Morphological and chemical nature of Fiber strands of oil palm empty-fruit bunch (OPEFB). BioResources 2:351–362

    CAS  Google Scholar 

  • Marega C, Marigo A, DiNoto V, Zannetti R (1992) Structure and crystallization kinetics of poly(L-lactic acid). Die Makromolekulare Chemie 193:1599–1606

    Article  CAS  Google Scholar 

  • Mieck KP, Reussmann T, Nechwatal A (2003) About the characterization of the mechanical properties of natural fibres. Materialwiss Werksttech 34:285–289

    Article  CAS  Google Scholar 

  • Mikolay A, Huggett S, Tikana L, Grass G, Braun J, Nies DH (2010) Survival of bacteria on metallic copper surfaces in a hospital trial. Appl Microbial Biot 87:1875–1879

    Article  CAS  Google Scholar 

  • Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234

    Google Scholar 

  • Öztürk I, Irmak S, Hesennov A, Erabatur O (2010) Hydrolysis of kenaf (Hibiscus cannabinus L.) stems by catalytic thermal treatment in subcritical water. Biomass Bioenerg 34:1578–1585

    Article  Google Scholar 

  • Peponi L, Biagiotti J, Torre L, Kenny JM, Mondragon I (2008) Statistical analysis of the mechanical properties of natural fibres and their composite materials. I Nat Fibres Polym Compos 29:313–320

    Article  CAS  Google Scholar 

  • Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007) Optimising industrial hemp fibre for composites. Compos Part A 38:461–468

    Article  Google Scholar 

  • Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, ulHasan MM (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 60:75–80

    Article  CAS  Google Scholar 

  • Ravindran SKT, Huesgen T, Kroener M, Woias P (2009) A self-sustaining micro thermomechanic-pyroelectric generator. Appl Phys Lett 95(10):104102

    Article  Google Scholar 

  • Ray D, Sarkar BK (2001) Characterization of alkali-treated jute fibers for physical and mechanical properties. J Appl Polym Sci 80:1013–1020

    Google Scholar 

  • Ray D, Sarkar BK, Basak RK, Rana AK (2002) Study of the thermal behavior of alkali-treated jute fibres. J Appl Polym Sci 85:2594–2599

    Article  CAS  Google Scholar 

  • Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70:116–122

    Article  Google Scholar 

  • Roy A, Chakraborty S, Kundu SP, Basak RK, Majumder SB, Adhikari B (2012) Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model. Bioresour Technol 107:222–228

    Article  CAS  Google Scholar 

  • Saha P, Manna S, Roy CS, Sen R, Roy D, Adhikari B (2010) Enhancement of tensile strength of lignocellulosic jute fibres by alkali-steam treatment. Bioresour Technol 101:3182–3187

    Article  CAS  Google Scholar 

  • Shih CM, Shieh YT, Twu YK (2009) Preparation and characterization of cellulose/chitosan blend films. Carbohydr Polym 78(1):169–174

    Article  CAS  Google Scholar 

  • Sinha S, Rout SK (2009) Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite. Bull Mater Sci 32:65–76

    Article  CAS  Google Scholar 

  • Sureshkumar M, Siswanto DY, Lee CK (2010) Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. J Mater Chem 20:6948–6955

    Article  CAS  Google Scholar 

  • Tsioptsias C, Panayiotou C (2008) Preparation of cellulose-nanohydroxyapatite composite scaffolds from ionic liquid solutions. Carbohydr Polym 74(1):99–105

    Article  CAS  Google Scholar 

  • Umikalsom MS, Ariff AB, Zulkifli HS, Tong CC, Hassan MA, Karim MIA (1997) The treatment of oil palm empty fruit bunch fibre for subsequent use as substrate for cellulase production by chaetomium globosum kunze. Bioresour Technol 62:1–9

    Article  CAS  Google Scholar 

  • Weibull WJ (1951) A statistical distribution functions of wide applicability. J Appl Mech 18:293–297

    Google Scholar 

  • Weng Z, Su Y, Wang DW, Li F, Du JH, Cheng HM (2011) Graphene–cellulose paper flexible supercapacitors. Adv Energ Mater 1(5):917–922

    Article  CAS  Google Scholar 

  • Yu W, Xie H, Chen L, Li Y, Zhang C (2009) Synthesis and characterization of monodispersed copper colloids in polar solvents. Nanoscale Res Lett 4:465–470

    Article  CAS  Google Scholar 

  • Zafeiropoulos NE, Baillie CA (2007) A study of the effect of surface treatments on the tensile strength of flax fibres: Part II application of Weibull statistics. Compos Part A Appl Sci Manuf 38(2):629–638

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge Universiti Malaysia Pahang (UMP), Malaysia, for funding of this work under the grant number of GRS 110322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksudur R. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, M.N.K., Beg, M.D.H., Khan, M.R. et al. Modification of oil palm empty fruit bunch fibers by nanoparticle impregnation and alkali treatment. Cellulose 20, 1477–1490 (2013). https://doi.org/10.1007/s10570-013-9921-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9921-7

Keywords

Navigation