Skip to main content
Log in

A specific case in the classification of woods by FTIR and chemometric: discrimination of Fagales from Malpighiales

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Fourier transform infrared (FTIR) spectroscopic data was used to classify wood samples from nine species within the Fagales and Malpighiales using a range of multivariate statistical methods. Taxonomic classification of the family Fagaceae and Betulaceae from Angiosperm Phylogenetic System Classification (APG II System) was successfully performed using supervised pattern recognition techniques. A methodology for wood sample discrimination was developed using both sapwood and heartwood samples. Ten and eight biomarkers emerged from the dataset to discriminate order and family, respectively. In the species studied FTIR in combination with multivariate analysis highlighted significant chemical differences in hemicelluloses, cellulose and guaiacyl (lignin) and shows promise as a suitable approach for wood sample classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Åkerholm M, Salmén L, Salme L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969. doi:10.1016/S0032-3861(00)00434-1

    Article  Google Scholar 

  • Anchukaitis KJ, Evans MN, Lange T et al (2008) Consequences of a rapid cellulose extraction technique for oxygen isotope and radiocarbon analyses. Anal Chem 80:2035–2041. doi:10.1016/j.gca.2004.01.006.Analytical

    Article  CAS  Google Scholar 

  • Apg II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436. doi:10.1046/j.1095-8339.2003.t01-1-00158.x

    Article  Google Scholar 

  • Barnett JR, Jeronimidis G (2003) Wood quality and its biological basis. Blackwell, Oxford, p 226

    Google Scholar 

  • Bjarnestad S, Dahlman O (2002) Chemical compositions of hardwood and softwood pulps employing photoacoustic Fourier transform infrared spectroscopy in combination with partial least-squares analysis. Anal Chem 74:5851–5858. doi:10.1021/ac025926z

    Article  CAS  Google Scholar 

  • Brinkmann K, Blaschke L, Polle A (2002) Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. J Chem Ecol 28:2483–2501. doi:10.1023/A:1021484002582

    Article  CAS  Google Scholar 

  • Brunner M, Eugster R, Trenka E, Bergamin-Strotz L (1996) FT-NIR spectroscopy and wood identification. Holzforschung 50:130–134. doi:10.1515/hfsg.1996.50.2.130

    Article  CAS  Google Scholar 

  • Callow JA, Andrews JH, Tommerup IC (2006) Advances in botanical research, vol 21. Academic Press, London, p 304

    Google Scholar 

  • Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of Analytical Chemistry. Wiley, Chichester, pp 10815–10837

  • Ek M, Gellerstedt G, Henriksson G (2009) Wood chemistry and wood biotechnology. Walter de Gruyter, Berlin, p 308

    Book  Google Scholar 

  • Gidman E, Goodacre R, Emmett B et al (2003) Investigating plant–plant interference by metabolic fingerprinting. Phytochemistry 63:705–710. doi:10.1016/S0031-9422(03)00288-7

    Article  CAS  Google Scholar 

  • Gorgulu ST, Dogan M, Severcan F (2007) The characterization and differentiation of higher plants by Fourier transform infrared spectroscopy. Appl Spectrosc 61:300–308. doi:10.1366/000370207780220903

    Article  CAS  Google Scholar 

  • Gottlieb DM, Schultz J, Bruun SW et al (2004) Multivariate approaches in plant science. Phytochemistry 65:1531–1548. doi:10.1016/j.phytochem.2004.04.008

    Article  CAS  Google Scholar 

  • Hastie TJ, Tibshirani RJ, Friedman JJH (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York, p 745

    Book  Google Scholar 

  • Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccharides. Springer, Berlin, p 232

    Google Scholar 

  • Hobro A, Kuligowski J, Döll M, Lendl B (2010) Differentiation of walnut wood species and steam treatment using ATR-FTIR and partial least squares discriminant analysis (PLS-DA). Anal Bioanal Chem 398:2713–2722. doi:10.1007/s00216-010-4199-1

    Article  CAS  Google Scholar 

  • Huang A, Zhou Q, Liu J et al (2008) Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy. J Mol Struct 883–884:160–166. doi:10.1016/j.molstruc.2007.11.061

    Article  Google Scholar 

  • Kacuráková M, Kauráková M, Capek P et al (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203. doi:10.1016/S0144-8617(00)00151-X

    Article  Google Scholar 

  • Kemsley EK (1998) Discriminant analysis and class modelling of spectroscopic data. Wiley, Chichester, p 179

    Google Scholar 

  • Kim SW, Ban SH, Chung HJ et al (2004) Taxonomic discrimination of flowering plants by multivariate analysis of Fourier transform infrared spectroscopy data. Plant Cell Rep 23:246–250. doi:10.1007/s00299-004-0811-1

    Article  CAS  Google Scholar 

  • Klecka WR (1980) Discriminant analysis. Sage Publications, Beverly Hills, CA, p 71

    Google Scholar 

  • Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules 6:2815–2821. doi:10.1021/bm050288q

    Article  CAS  Google Scholar 

  • Larkin P (2011) Infrared and Raman spectroscopy; principles and spectral interpretation. Elsevier, Amsterdam, p 230

    Google Scholar 

  • Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm−1. J Polym Sci 39:269–278. doi:10.1002/pol.1959.1203913521

    Article  CAS  Google Scholar 

  • Marchessault RH (1962) Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure Appl Chem 5:107–130. doi:10.1351/pac196205010107

    Article  CAS  Google Scholar 

  • Marchessault RH, Liang CY (1962) The infrared spectra of crystalline polysaccharides. VIII. Xylans. J Polym Sci 59:357–378. doi:10.1002/pol.1962.1205916813

    Article  CAS  Google Scholar 

  • Martin JW (2007) Concise encyclopedia of the structure of materials. Elsevier, Amsterdam, p 512

    Google Scholar 

  • McCann MC, Bush M, Milioni D et al (2001) Approaches to understanding the functional architecture of the plant cell wall. Phytochemistry 57:811–821. doi:10.1016/S0031-9422(01)00144-3

    Article  CAS  Google Scholar 

  • Meinzer FC, Lachenbruch B, Dawson TE (2011) Size- and age-related changes in tree structure and function. Springer, Dordrecht, p 510

    Book  Google Scholar 

  • Mohebby B (2005) Attenuated total reflection infrared spectroscopy of white-rot decayed beech wood. Int Biodeterior Biodegradation 55:247–251. doi:10.1016/j.ibiod.2005.01.003

    Article  CAS  Google Scholar 

  • Mohebby B (2008) Application of ATR infrared spectroscopy in wood acetylation. J Agric Sci 10:253–259

    Google Scholar 

  • Nuopponen M (2005) FT-IR and UV Raman spectroscopic studies on thermal modification of Scots pine wood and its extractable compounds. Helsinki University of Technology, Espoo, Finland

  • Obst JR (1982) Guaiacyl and syringyl lignin composition in hardwood cell components. Holzforschung 36:143–152. doi:10.1515/hfsg.1982.36.3.143

    Article  CAS  Google Scholar 

  • Pandey KK, Vuorinen T (2008) Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polym Degrad Stab 93:2138–2146. doi:10.1016/j.polymdegradstab.2008.08.013

    Article  CAS  Google Scholar 

  • Rakotomalala R (2005) "TANAGRA : un logiciel gratuit pour l'enseignement et la recherche", in Actes de EGC'2005, RNTI-E-3, vol. 2, pp. 697–702

  • Rana R (2008) Correlation between anatomical/chemical wood properties and genetic markers as a means of wood certification. Dissertation, Klartext GmbH, Göttingen. ISBN: 978-3-9811503-2-2

  • Rana R, Langenfeld-Heyser R, Finkeldey R, Polle A (2009) FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci Technol 44:225–242. doi:10.1007/s00226-009-0281-2

    Article  Google Scholar 

  • Revanappa SB, Nandini CD, Salimath PV (2010) Structural characterisation of pentosans from hemicellulose B of wheat varieties with varying chapati-making quality. Food Chem 119:27–33. doi:10.1016/j.foodchem.2009.04.064

    Article  CAS  Google Scholar 

  • Rhoads CA, Painter P, Given P (1987) FTIR studies of the contributions of plant polymers to coal formation. Int J Coal Geol 8:69–83. doi:10.1016/0166-5162(87)90023-1

    Article  CAS  Google Scholar 

  • Sandak A, Sandak J, Negri M (2010) Relationship between near-infrared (NIR) spectra and the geographical provenance of timber. Wood Sci Technol 45:35–48. doi:10.1007/s00226-010-0313-y

    Article  Google Scholar 

  • Shen JB, Lu HF, Peng QF et al (2008) FTIR spectra of Camellia sect. Oleifera, sect. Paracamellia, and sect. Camellia (Theaceae) with reference to their taxonomic significance. J Syst Evol 46:194–204. doi:10.3724/SP.J.1002.2008.07125

    Google Scholar 

  • Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds. Wiley, Hoboken, NJ, p 502

    Google Scholar 

  • Sjostrom E (1981) Wood chemistry: fundamentals and applications. Academic Press, New York, p 293

    Google Scholar 

  • Stewart D, Wilson HM, Hendra PJ, Morrison IM (1995) Fourier-transform infrared and Raman spectroscopic study of biochemical and chemical treatments of oak wood (Quercus rubra) and barley (Hordeum vulgare) straw. J Agric Food Chem 43:2219–2225. doi:10.1021/jf00056a047

    Article  CAS  Google Scholar 

  • Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Hoboken, NJ, p 224

    Book  Google Scholar 

  • Takayama M (1997) Fourier transform Raman assignment of guaiacyl and syringyl marker bands for lignin determination. Spectrochim Acta A 53:1621–1628. doi:10.1016/S1386-1425(97)00100-5

    Article  Google Scholar 

  • Tsuchikawa S (2007) A review of recent near infrared research for wood and paper. Appl Spectrosc Rev 42:43–71. doi:10.1080/05704920601036707

    Article  CAS  Google Scholar 

  • Wang S, Wang K, Liu Q et al (2009) Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv 27:562–567. doi:10.1016/j.biotechadv.2009.04.010

    Article  CAS  Google Scholar 

  • Wellner N (1998) FT-IR study of pectate and pectinate gels formed by divalent cations. Carbohydr Res 308:123–131. doi:10.1016/S0008-6215(98)00065-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Europracticum IV (Leonardo da Vinci Programme). We gratefully acknowledge to the Consello Social from Universidade de Santiago de Compostela (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Gonzalez-Rodriguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carballo-Meilan, A., Goodman, A.M., Baron, M.G. et al. A specific case in the classification of woods by FTIR and chemometric: discrimination of Fagales from Malpighiales. Cellulose 21, 261–273 (2014). https://doi.org/10.1007/s10570-013-0093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0093-2

Keywords

Navigation